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SAMPLING 
PROBLEMS

• Want to produce samples from a density 

𝑝 𝑤 ∝ 𝑝0 𝑤 𝑒 𝛽 𝐿(𝑤)

• Ex. Bayesian models/ posterior densities, numerical 

integration,  statistical physics, generative models

• The densities can have complex structure, multi-

model, non-concave, that makes them difficult to 

sample

• Traditional Markov Chain Monte Carlo (MCMC) is 

not cutting it

• New need algorithms tailored to modern problems



NEW ALGORITHMS: TWO APPROACHES

AUXILIARY 
RANDOM 

VARIABLES

DIFFUSION 
MODELS



AUXILIARY RANDOM VARIABLES

Gibb’s Sampling

• Conditional densities 𝑝 𝑤 𝜉 , 𝑝(𝜉|𝑤)

• Alternate sampling conditionals

• What is mixing time of this MCMC?

Mixture Representation

• 𝑝 𝑤 = ∫ 𝑝 𝑤 𝜉 𝑝 𝜉 𝑑𝜉

• Sample 𝜉 ∼ 𝑝 𝜉 , 𝑤 ∼ 𝑝(𝑤|𝜉), gives draw 

of 𝑤 ∼ 𝑝(𝑤)

• Can we establish when both 𝑝 𝜉 , 𝑝 𝑤 𝜉

are easy to sample?

• Target variable w, target density 𝑝(𝑤)
• Any joint density 𝑝 𝑤, 𝜉  with 𝑝 𝑤 = ∫ 𝑝 𝑤, 𝜉 𝑑𝜉 is fine for sampling

• 𝜉 is ``auxiliary’’ random variable, user defined only for sampling purposes.

• Can help put structure on joint density easier to sample from

• Ex. Hamiltonian MC, Simulated Annealing/ Tempering, Proximal Sampling

• Auxiliary r.v. conditional normal, 𝜉|𝑤 ∼ 𝑁 𝜆 𝑤, 𝐼 , 𝜉 = 𝜆 𝑤 + 1 − 𝜆 𝑍, 𝑍 ∼ 𝑁(0,1)
• “Noisy” version of target random variable



LOG-CONCAVE COUPLING

Satisfies 3 
properties

1. Target marginal is maintained, 𝑝 𝑤 = ∫ 𝑝 𝑤 𝜉 𝑝 𝜉 𝑑𝜉

2. For all 𝜉, the reverse conditional density 𝑝(𝑤|𝜉) is log-concave

3. Auxiliary marginal density 𝑝(𝜉) is log-concave

Mixture 
Representation

Easy 

Sampling

Mixture density with log-concave mixing density 𝑝 𝜉 , log-

concave mixture components 𝑝(𝑤|𝜉)

Easy sampling of 𝜉 ∼ 𝑝(𝜉) with off the shelf MCMC, followed by 

draw 𝑝(𝑤|𝜉) also easy

• Given target density 𝑝 𝑤 , a log-concave coupling is a joint density 𝑝(𝑤, 𝜉) such that



DIFFUSION 
MODELS

• Forward SDE moves from target to simple normal

• Reverse moves from simple to target

• Need scores of forward marginals ∇ log 𝑝𝑡(𝑤𝑡) to implement reverse flow

• Each joint pair 𝑝 𝑤0, 𝑤𝑡  is mixture representation p∗ 𝑤0 = ∫ 𝑝 𝑤0 𝑤𝑡 𝑝 𝑤𝑡 𝑑𝑤𝑡

• OU Process tied to normal conditionals

𝑝 𝑤𝑡 𝑤0 ∼ 𝑁 𝑒−𝑡𝑤0, 1 − 𝑒−2𝑡 𝐼 wt = 𝜆𝑤0 + 1 − 𝜆 𝑍, 𝑍 ∼ 𝑁(0,1)

[1]



EVOLUTION OF DENSITY



EASY REGIME: LOG-CONCAVE COUPLING

• If conditional threshold 

happens after marginal 

threshold

• Exist times 𝜏2 < 𝑡 < 𝜏1 such 

that both problems are easy at 

same time

• Mixture representation 

𝑝 𝑤0 = ∫ 𝑝 𝑤0 𝑤𝑡 𝑝 𝑤𝑡 𝑑𝑤𝑡

• Log-concave coupling

• Easily sampled by MCMC

• “One-shot” reverse diffusion



OVER PARAMETERIZED NEURAL 
NETWORKS

• Over parameterized neural networks have this mixture representation

• Single hidden layer neural network, K neurons each weight vector dimension d. 

𝑓 𝑥, 𝑤 = 𝑉 ෍

𝑘=1

𝐾
1

𝐾
𝜑(𝑥 ⋅ 𝑤𝑘)

• Only trian inner weights, Kd parameters overall

• N data pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁 , gain 𝛽, posterior density

 𝑝 𝑤 ∝ 𝑝0 𝑤 𝑒−𝛽 σ𝑖=1
𝑁 𝑦𝑖−𝑓 𝑥𝑖,𝑤

2

• Density 𝒑 𝒘  has log-concave coupling when (number of parameters) = 𝑲𝒅 > (𝜷𝑵)^𝟐

• 𝑝 𝑤 = ∫ 𝑝 𝑤 𝜉 𝑝 𝜉 𝑑𝜉, 𝑝(𝜉) log-concave and 𝑝 𝑤 𝜉  log-concave



INTERPRETATION OF RESULT

• Condition: 𝑝 𝑤 ∝ 𝑝0 𝑤 𝑒−𝛽 σ𝑖=1
𝑁 𝑦𝑖−𝑓 𝑥𝑖,𝑤

2

, 𝐾𝑑 > 𝛽𝑁 2

𝑝 𝑤 ∝ 𝑝0 𝑤 𝑒− 𝛽𝑁 σ𝑖=1
𝑁 1

𝑁 𝑦𝑖−𝑓 𝑥𝑖,𝑤
2

, 𝜆 = 𝛽𝑁, Kd > 𝜆2

• For fixed N and gain 𝛽 (or fixed 𝜆), as we increase number of parameters network will 

eventually enter log-concave coupling regime

• Rearrange for 𝛽, 𝛽 <
𝐾𝑑

𝑁
 or 𝜆 < 𝐾𝑑

• 𝛽 is on a spectrum from 0 to infinity. “Easy” sampling up to 
𝐾𝑑

𝑁
 

𝛽 = 0 𝛽 = ∞𝛽 =
𝐾𝑑

𝑁Easy Sampling

Sampling 

prior
Optimizing Loss



HARD CASE: NO OVERLAP

• If “easy” regions don’t overlap, no 

single simple expression for target 

density

• Have to run full reverse diffusion 

model

• Need to compute scores of forward 

SDE

• Ongoing research

• For NN:

• 𝐾𝑑 < 𝛽𝑁 2 (less parameters)

• 𝛽 > ൗ√(𝐾𝑑)
𝑁 (high gain)



SUMMARY

• Sampling problems of interest today require new 

algorithms

•  Auxiliary random variables can provide structure 

for MCMC

• Diffusion models define mixture representations 

of target density

• For single hidden layer NN, easy mixture when 

overparameterized

• Can provide insight for loss landscape and 

increase interest in Bayesian methods in ML



PAPER ON TOPIC

McDonald, C., Barron, A.
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Networks via Log-Concave Coupling. 

March, 2025. arXiv.
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