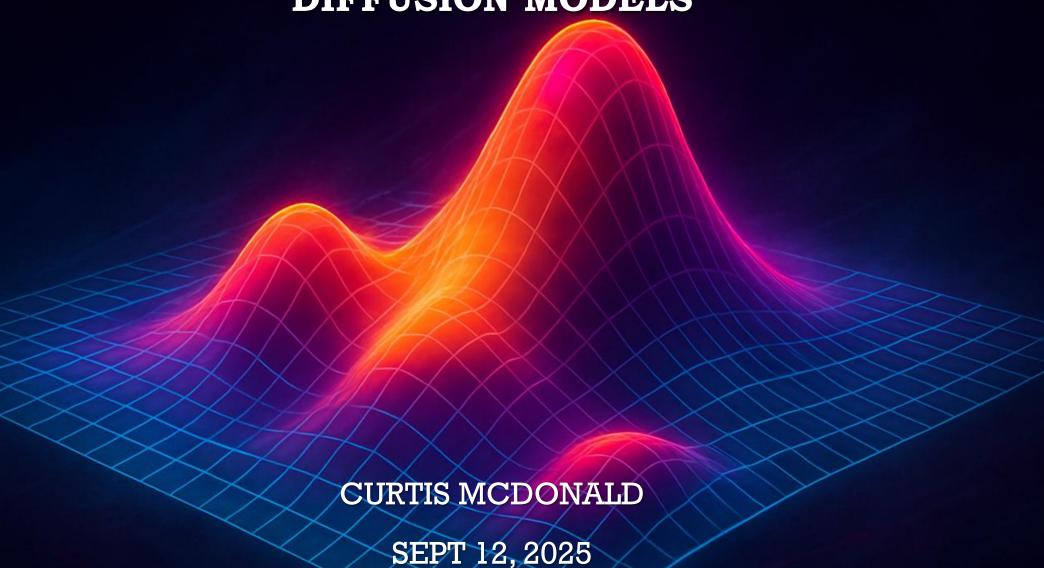
SAMPLING ALGORITHMS FOR MACHINE LEARNING WITH AUXILIARY RANDOM VARIABLES AND DIFFUSION MODELS



• Want to produce samples from a density $p(w) \propto p_0(w) e^{\beta L(w)}$

- Ex. Bayesian models/ posterior densities, numerical integration, statistical physics, generative models
- The densities can have complex structure, multimodel, non-concave, that makes them difficult to sample
- Traditional Markov Chain Monte Carlo (MCMC) is not cutting it
- New need algorithms tailored to modern problems

SAMPLING PROBLEMS

NEW ALGORITHMS: TWO APPROACHES

AUXILIARY RANDOM VARIABLES

DIFFUSION MODELS

AUXILIARY RANDOM VARIABLES

- Target variable w, target density p(w)
- Any joint density $p(w, \xi)$ with $p(w) = \int p(w, \xi) d\xi$ is fine for sampling
- ξ is ``auxiliary'' random variable, user defined only for sampling purposes.
- Can help put structure on joint density easier to sample from
- Ex. Hamiltonian MC, Simulated Annealing/Tempering, Proximal Sampling

Gibb's Sampling

- Conditional densities $p(w|\xi)$, $p(\xi|w)$
- Alternate sampling conditionals
- What is mixing time of this MCMC?

Mixture Representation

- $p(w) = \int p(w|\xi)p(\xi)d\xi$
- Sample $\xi \sim p(\xi)$, $w \sim p(w|\xi)$, gives draw of $w \sim p(w)$
- Can we establish when both $p(\xi)$, $p(w|\xi)$ are easy to sample?
- Auxiliary r.v. conditional normal, $\xi | w \sim N(\lambda w, I), \xi = \lambda w + (1 \lambda)Z, Z \sim N(0, 1)$
- "Noisy" version of target random variable

LOG-CONCAVE COUPLING

• Given target density p(w), a log-concave coupling is a joint density $p(w, \xi)$ such that

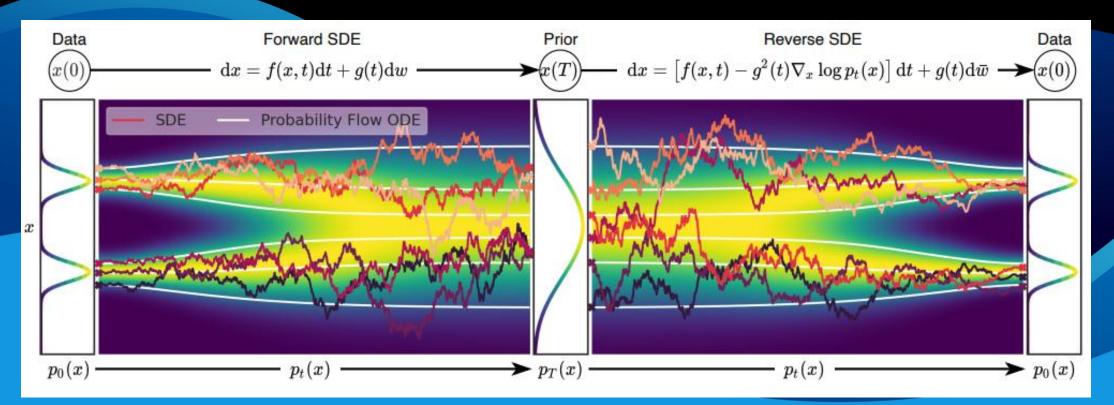
Satisfies 3	1. Target marginal is maintained, $p(w) = \int p(w \xi)p(\xi)d\xi$
properties	2. For all ξ , the reverse conditional density $p(w \xi)$ is log-concave
	3. Auxiliary marginal density $p(\xi)$ is log-concave
Mixture Representation	Mixture density with log-concave mixing density $p(\xi)$, log-concave mixture components $p(w \xi)$
Easy Sampling	Easy sampling of $\xi \sim p(\xi)$ with off the shelf MCMC, followed by draw $p(w \xi)$ also easy

• Forward SDE moves from target to simple normal

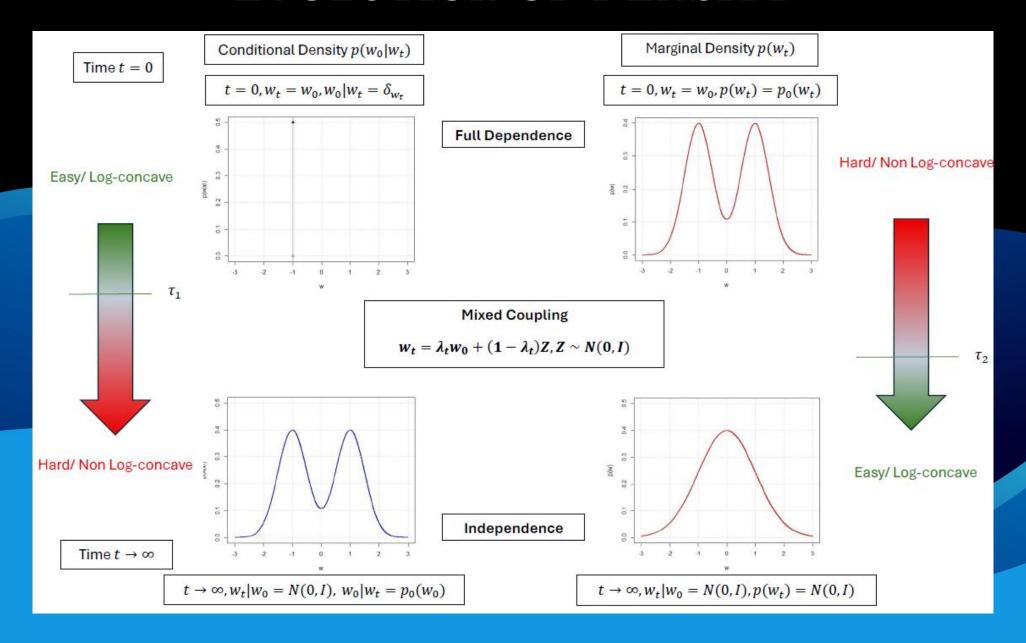
DIFFUSION MODELS

- Reverse moves from simple to target
- Need scores of forward marginals $\nabla \log p_t(w_t)$ to implement reverse flow
- Each joint pair $p(w_0, w_t)$ is mixture representation $p^*(w_0) = \int p(w_0|w_t)p(w_t)dw_t$
- OU Process tied to normal conditionals

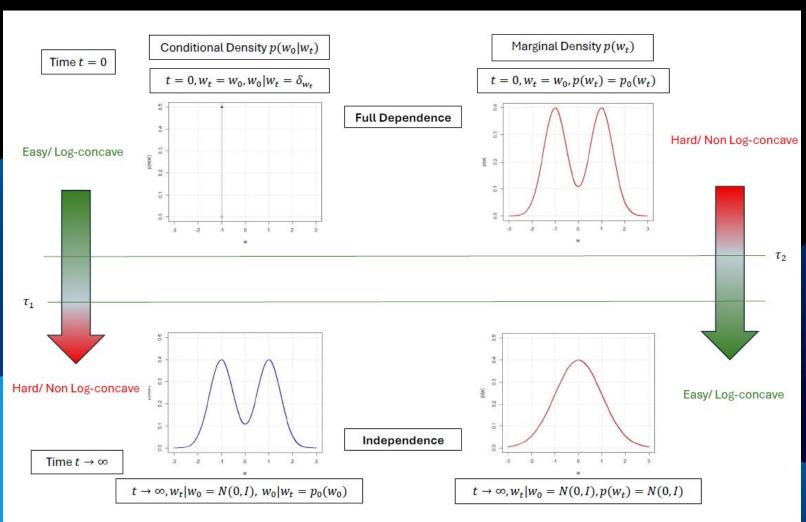
$$p(w_t|w_0) \sim N(e^{-t}w_0, (1-e^{-2t})I) \leftrightarrow w_t = \lambda w_0 + (1-\lambda)Z, Z \sim N(0,1)$$



EVOLUTION OF DENSITY



EASY REGIME: LOG-CONCAVE COUPLING



- If conditional threshold happens after marginal threshold
- Exist times $\tau_2 < t < \tau_1$ such that both problems are easy at same time
- Mixture representation $p(w_0) = \int p(w_0|w_t)p(w_t)dw_t$
- Log-concave coupling
- Easily sampled by MCMC
- "One-shot" reverse diffusion

OVER PARAMETERIZED NEURAL NETWORKS

- Over parameterized neural networks have this mixture representation
- · Single hidden layer neural network, K neurons each weight vector dimension d.

$$f(x,w) = V \sum_{k=1}^{K} \frac{1}{K} \varphi(x \cdot w_k)$$

- Only trian inner weights, Kd parameters overall
- N data pairs $(x_i, y_i)_{i=1}^N$, gain β , posterior density

$$p(w) \propto p_0(w)e^{-\beta \sum_{i=1}^{N} (y_i - f(x_i, w))^2}$$

- Density p(w) has log-concave coupling when (number of parameters) = $Kd > (\beta N)^2$
- $p(w) = \int p(w|\xi)p(\xi)d\xi$, $p(\xi)$ log-concave and $p(w|\xi)$ log-concave

INTERPRETATION OF RESULT

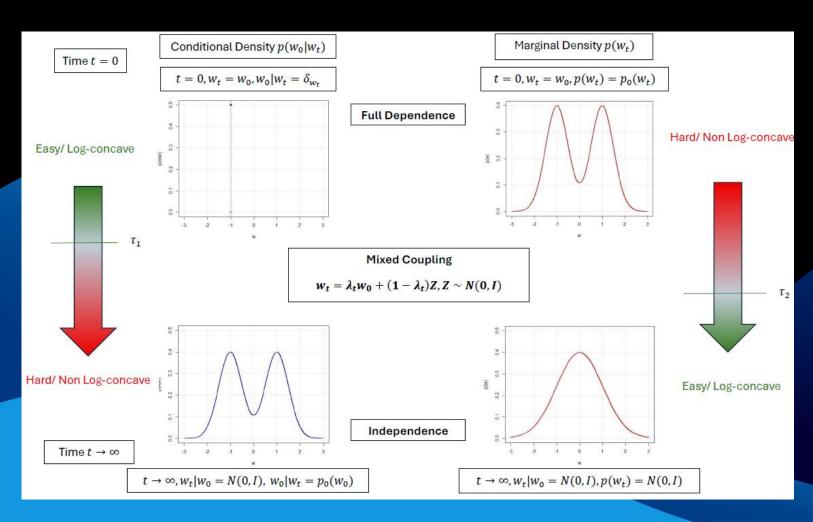
• Condition:
$$p(w) \propto p_0(w) e^{-\beta \sum_{i=1}^{N} (y_i - f(x_i, w))^2}$$
, $Kd > (\beta N)^2$

$$p(w) \propto p_0(w) e^{-(\beta N) \sum_{i=1}^{N} \frac{1}{N} (y_i - f(x_i, w))^2}$$
, $\lambda = \beta N$, $Kd > \lambda^2$

- For fixed N and gain β (or fixed λ), as we increase number of parameters network will eventually enter log-concave coupling regime
- Rearrange for β , $\beta < \frac{\sqrt{Kd}}{N}$ or $\lambda < \sqrt{Kd}$
- β is on a spectrum from 0 to infinity. "Easy" sampling up to $\frac{\sqrt{Kd}}{N}$

$$\beta = 0$$
 Easy Sampling
$$\beta = \frac{\sqrt{Kd}}{N}$$
 Optimizing Loss prior

HARD CASE: NO OVERLAP



- If "easy" regions don't overlap, no single simple expression for target density
- Have to run full reverse diffusion model
- Need to compute scores of forward
 SDE
- Ongoing research
- For NN:
 - $Kd < (\beta N)^2$ (less parameters)
 - $\beta > \sqrt{(Kd)}/N$ (high gain)

SUMMARY

- Sampling problems of interest today require new algorithms
- Auxiliary random variables can provide structure for MCMC
- Diffusion models define mixture representations of target density
- For single hidden layer NN, easy mixture when overparameterized
- Can provide insight for loss landscape and increase interest in Bayesian methods in ML

PAPER ON TOPIC

McDonald, C., Barron, A.

Rapid Bayesian Computation and Estimation for Neural Networks via Log-Concave Coupling.

March, 2025. arXiv.

Scan me!

REFERENCES

• [1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." arXiv preprint arXiv:2011.13456 (2020).