SAMPLING ALGORITHMS FOR MACHINE LEARNING
WITH AUXILIARY RANDOM VARIABLES AND
DIFFUSION MODELS
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 Want to produce samples from a density
p(w) < po(w)e F L)

Ex. Bayesian models/ posterior densities, numerical

©9%  SAMPLING 4
wen: PROBLEMS'



NEW ALGORITHMS: TWO APPROACHES
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AUXILIARY RANDOM VARIABLES

« Target variable w, target density p(w)

. Any ]omt density p(w, &) with p(w) = [ p(w, §)d¢ is fine for sampling
auxiliary”’ random variable, user defined only for sampling purposes.

ure on joint density easier to sample from

Mixture Representation

* p(w) = [ pWIE)p(§)d¢
« Sample ¢ ~ p(&),w ~ p(w|¢&), gives draw

ofw ~ p(w)

* What 1s mixing time c
+ Can we establish when both p(¢§)
are easy to sample?

=Aw+1-4)Z,Z~N(0




LOG-CONCAVE COUPLING

« Given target density p(w), a log-concave coupling is a joint density p(w, ¢) such that

Satisfies 3 marginal is maintained, p(w) = [ p(W|E)p(&)dé

properties 2. For all ¢

everse conditional density p(w|¢) is log-concave

3. Auxiliary marginal density p(¢) is log-concave

Mixture
Representation

~ p(¢) with off the shelf MCMC, followed b



» Forward SDE moves from target to simple normal

* Reverse moves from simple to target

DIFFUSION
MODELS

Need scores of forward marginals V log p;(w;) to implement reverse flow

Each joint pair p(w,, w;) is mixture representation p*(wy) = [ p(wqo|w,)p(w,)dw,

e OU Process tied to normal conditionals
p(Welwy) ~ N(e twy, (1 —e™2)]) o wy = Awy + (1 —A)Z,Z ~ N(0,1)

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw dz = [f(z,t) — )V, log pt ()] dt + g(t)dw

Probability Flow ODE
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EVOLUTION OF DENSITY

Conditional Density p(wg|w;) Marginal Density p(w;)

L= O,Wt — Wo,Wolwt — 6Wt L= O’Wt T WO' p(wt) - po(wt)

a

Full Dependence

Hard/ Non Log-concave
Easy/ Log-concave

Mixed Coupling

W = AtWO + (1 = At)Z,Z Gk N(O,I)

Hard/ Non Log-concave /\/ N // Easy/ Log-concave
: e Independence o | e

" w

t = o, w¢|wo = N(0,I), wo|w; = po(Wo) t = oo,wi|lwy = N(0,I),p(w;) = N(0,I)




EASY REGIME: LOG-CONCAVE COUPLING

Conditional Density p(wo|w;) Marginal Density p(w;)

R R— T e If conditional threshold
_» TR T IR happens after marginal
s Hard/ Non Log-concave S Y R oYY gTe) Ko
AR 3R . Exist times 7, < t < 74 such
that both problems are easy at
same time
* Mixture representation
p(wo) = | p(wolwe)p(wy) dusf”
£ * Log-concave coupling
Herd/ Non Log-concae ,N/ \ el + Easily sampled by MCMC

. \ * “One-shot” reversé diffusion

t = oo, we|lwo = N(0,1), wo|we = po(Wo) t = oo,w;[w, = N(0,1),p(w,) = N(0,1)




OVER PARAMETERIZED NEURAL
NETWORKS

* Only trian inner weights, Kd parameters overall

« N datapairs.(x;, y;)i-, gain 3, posterior density

p(w) o po(w)eF S, (vi-fGxpw))”

Density p(w) has log-concave coupling when (number of parameters) = Kd > (fN)"2

0Dg-concave



INTERPRETATION OF RESULT




HARD CASE: NO OVERLAP

Conditional Density p(wo|w:) Marginal Density p(w,)

t = 0,w, = Wy, Wo|W, = 6, t=0,w; =wo,p(W;) = po(W)

Hard/ Non Log-concave

Easy/ Log-concave

Mixed Coupling

wy =Awo + (1—2,)Z,Z ~ N(0,I)

Hard/ Non Log-concave Easy/ Log-concave
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Independence

t = oo, welwp = N(O'I)- Wo|we = po(Wo) t = o,w|wo = N(0,1),p(w;) = N(0,I)

If “easy” regions don’t overlap, no
single simple expression for target
density

Have to run full reverse diffusion
model

Need to compute scores of forward
SDE

Ongoing research

For NN: 4
« Kd < (BN)? (less parameters)
s > \/(Kd)/ y (high gain)



* Sampling problems of interest today require new
algorithms

* Auxiliary random variables can provide structure
for MCMC

* Diffusion models define mixture representations
of target density

For single hidden layer NN, easy mixture when

overparameterized




PAPER ON TOPIC

McDonald, C.,Barron, A.

Rapid Bayesian Computation and Estimation for Neural
Networks via Log-Concave Coupling.

March, 2025. arXiv.

Scan me!
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