# SAMPLING ALGORITHMS FOR MACHINE LEARNING WITH AUXILIARY RANDOM VARIABLES AND DIFFUSION MODELS



• Want to produce samples from a density  $p(w) \propto p_0(w) e^{\beta L(w)}$ 

- Ex. Bayesian models/ posterior densities, numerical integration, statistical physics, generative models
- The densities can have complex structure, multimodel, non-concave, that makes them difficult to sample
- Traditional Markov Chain Monte Carlo (MCMC) is not cutting it
- New need algorithms tailored to modern problems

### SAMPLING PROBLEMS

#### **NEW ALGORITHMS: TWO APPROACHES**

AUXILIARY RANDOM VARIABLES

DIFFUSION MODELS

#### **AUXILIARY RANDOM VARIABLES**

- Target variable w, target density p(w)
- Any joint density  $p(w, \xi)$  with  $p(w) = \int p(w, \xi) d\xi$  is fine for sampling
- $\xi$  is ``auxiliary'' random variable, user defined only for sampling purposes.
- Can help put structure on joint density easier to sample from
- Ex. Hamiltonian MC, Simulated Annealing/Tempering, Proximal Sampling

#### Gibb's Sampling

- Conditional densities  $p(w|\xi)$ ,  $p(\xi|w)$
- Alternate sampling conditionals
- What is mixing time of this MCMC?

#### **Mixture Representation**

- $p(w) = \int p(w|\xi)p(\xi)d\xi$
- Sample  $\xi \sim p(\xi)$ ,  $w \sim p(w|\xi)$ , gives draw of  $w \sim p(w)$
- Can we establish when both  $p(\xi)$ ,  $p(w|\xi)$  are easy to sample?
- Auxiliary r.v. conditional normal,  $\xi | w \sim N(\lambda w, I), \xi = \lambda w + (1 \lambda)Z, Z \sim N(0, 1)$
- "Noisy" version of target random variable

#### LOG-CONCAVE COUPLING

• Given target density p(w), a log-concave coupling is a joint density  $p(w, \xi)$  such that

| Satisfies 3               | 1. Target marginal is maintained, $p(w) = \int p(w \xi)p(\xi)d\xi$                                   |
|---------------------------|------------------------------------------------------------------------------------------------------|
| properties                | 2. For all $\xi$ , the reverse conditional density $p(w \xi)$ is log-concave                         |
|                           | 3. Auxiliary marginal density $p(\xi)$ is log-concave                                                |
| Mixture<br>Representation | Mixture density with log-concave mixing density $p(\xi)$ , log-concave mixture components $p(w \xi)$ |
| Easy<br>Sampling          | Easy sampling of $\xi \sim p(\xi)$ with off the shelf MCMC, followed by draw $p(w \xi)$ also easy    |

#### • Forward SDE moves from target to simple normal

#### DIFFUSION MODELS

- Reverse moves from simple to target
- Need scores of forward marginals  $\nabla \log p_t(w_t)$  to implement reverse flow
- Each joint pair  $p(w_0, w_t)$  is mixture representation  $p^*(w_0) = \int p(w_0|w_t)p(w_t)dw_t$
- OU Process tied to normal conditionals

$$p(w_t|w_0) \sim N(e^{-t}w_0, (1-e^{-2t})I) \leftrightarrow w_t = \lambda w_0 + (1-\lambda)Z, Z \sim N(0,1)$$



#### **EVOLUTION OF DENSITY**



#### EASY REGIME: LOG-CONCAVE COUPLING



- If conditional threshold happens after marginal threshold
- Exist times  $\tau_2 < t < \tau_1$  such that both problems are easy at same time
- Mixture representation  $p(w_0) = \int p(w_0|w_t)p(w_t)dw_t$
- Log-concave coupling
- Easily sampled by MCMC
- "One-shot" reverse diffusion

## OVER PARAMETERIZED NEURAL NETWORKS

- Over parameterized neural networks have this mixture representation
- · Single hidden layer neural network, K neurons each weight vector dimension d.

$$f(x,w) = V \sum_{k=1}^{K} \frac{1}{K} \varphi(x \cdot w_k)$$

- Only trian inner weights, Kd parameters overall
- N data pairs  $(x_i, y_i)_{i=1}^N$ , gain  $\beta$ , posterior density

$$p(w) \propto p_0(w)e^{-\beta \sum_{i=1}^{N} (y_i - f(x_i, w))^2}$$

- Density p(w) has log-concave coupling when (number of parameters) =  $Kd > (\beta N)^2$
- $p(w) = \int p(w|\xi)p(\xi)d\xi$ ,  $p(\xi)$  log-concave and  $p(w|\xi)$  log-concave

#### INTERPRETATION OF RESULT

• Condition: 
$$p(w) \propto p_0(w) e^{-\beta \sum_{i=1}^{N} (y_i - f(x_i, w))^2}$$
,  $Kd > (\beta N)^2$ 

$$p(w) \propto p_0(w) e^{-(\beta N) \sum_{i=1}^{N} \frac{1}{N} (y_i - f(x_i, w))^2}$$
,  $\lambda = \beta N$ ,  $Kd > \lambda^2$ 

- For fixed N and gain  $\beta$  (or fixed  $\lambda$ ), as we increase number of parameters network will eventually enter log-concave coupling regime
- Rearrange for  $\beta$ ,  $\beta < \frac{\sqrt{Kd}}{N}$  or  $\lambda < \sqrt{Kd}$
- $\beta$  is on a spectrum from 0 to infinity. "Easy" sampling up to  $\frac{\sqrt{Kd}}{N}$

$$\beta = 0$$
 Easy Sampling 
$$\beta = \frac{\sqrt{Kd}}{N}$$
 Optimizing Loss prior

#### HARD CASE: NO OVERLAP



- If "easy" regions don't overlap, no single simple expression for target density
- Have to run full reverse diffusion model
- Need to compute scores of forward
   SDE
- Ongoing research
- For NN:
  - $Kd < (\beta N)^2$  (less parameters)
  - $\beta > \sqrt{(Kd)}/N$  (high gain)

#### SUMMARY

- Sampling problems of interest today require new algorithms
- Auxiliary random variables can provide structure for MCMC
- Diffusion models define mixture representations of target density
- For single hidden layer NN, easy mixture when overparameterized
- Can provide insight for loss landscape and increase interest in Bayesian methods in ML

#### PAPER ON TOPIC

McDonald, C., Barron, A.

Rapid Bayesian Computation and Estimation for Neural Networks via Log-Concave Coupling.

March, 2025. arXiv.



Scan me!

#### REFERENCES

• [1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." arXiv preprint arXiv:2011.13456 (2020).