
Abstract

Computation and Estimation for Neural Networks via Log-Concave Coupling

Curtis James McDonald

2025

In this work, we consider a Bayesian method to train single-hidden-layer neural networks

with ℓ1 controlled weights by defining posterior distributions using different subsets of the

training data, and combining posterior means to form our estimators. We consider both a

joint Bayesian model for all parameters of the neural network at once, and a greedy Bayes

model training the neurons one at a time based on the residuals of previous fits.

The log-likelihoods of the posterior distributions we define are multimodal and non-

concave, so sampling algorithms such as Markov Chain Monte Carlo (MCMC) will not be

rapidly mixing to directly sample the posteriors. Using an auxiliary random variable, we

produce a mixture distribution which we call a log-concave coupling. Using a continuous

uniform prior over the ℓ1 ball, the conditional distributions of this mixture are log-concave,

and the mixing distribution itself is log-concave when the number of parameters in our

neural network exceeds the squared number of data points. Thus the mixture distribution

can be sampled efficiently to produce samples for our original target density.

For a discrete uniform prior over the ℓ1 ball intersected with a grid of small spacing,

we study the performance of our posterior mean estimator in an arbitrary regret sense

and a statistical risk sense. Say we have a target function g, with g̃ being its projection

into the closure of the convex hull of signed neurons scaled by a constant. With neuron

weight vectors of dimension d and N data points, we show an estimator defined by a

combination of our posterior means in the joint sampling problem has arbitrary sequence

regret and statistical risk within O([(log d)/N]1/4) of the regret and risk of g̃. For the

greedy construction, the additional regret and risk is an improved third root power.

Computation and Estimation for Neural Networks via Log-Concave

Coupling

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Curtis James McDonald

Dissertation Director: Andrew R Barron

May 2025

Copyright © 2025 by Curtis James McDonald

All rights reserved.

ii

To my parents.

Contents

1 Introduction 1

1.1 Approximation, Estimation, and Computation 2

1.2 Algorithms for Neural Networks . 5

1.3 Bayesian Model . 9

1.3.1 Choice of Prior . 13

1.4 Log-Concave Coupling . 15

1.5 Risk and Regret . 17

1.6 Notation . 20

2 Log-Concave Coupling for Joint Sampling 22

2.1 Introduction . 22

2.2 Reverse Conditional Density . 24

2.3 Marginal Density . 29

2.4 Conditional Covariance Control . 32

2.5 Practical Sampling Considerations . 39

2.5.1 Log-Concave Coupling and Existing Methods 39

2.5.2 Bayesian Neural Networks . 41

2.5.3 Sampling the Reverse Conditional Density 42

2.5.4 Sampling the Induced Marginal Density 42

2.6 Appendix: Proofs of Additional Lemmas 45

iii

2.6.1 Proofs for Near Constancy of Z(w) 45

2.6.2 Log-Concavity of p∗n(w|ξ) with Conditioning on the Set B 52

2.6.3 Hölder Inequality Proofs . 55

3 Statistical Risk for Joint Sampling 63

3.1 Introductory Concepts in Risk Control 63

3.2 Approximation Ability of Single-Hidden-Layer Neural Networks 69

3.3 Arbitrary Sequence Regret . 75

3.4 IID Sequence Predictive Risk Control 80

3.5 Other Discrete Priors With Risk Control 93

3.5.1 Multinomial, Geometric, and Poisson Distributions 96

3.6 Appendix: Proofs of Additional Lemmas 101

3.6.1 Improved 1/M2 Regret Proofs 101

4 Log-Concave Coupling for Greedy Bayes 107

4.1 Introduction . 107

4.2 Construction of the Greedy Bayes Estimator 109

4.3 Posterior Sign Probability . 114

4.3.1 Methods to Compute Posterior Sign Probability Given Samples . 116

4.4 Log-Concave Coupling . 121

4.4.1 Reverse Conditional Density . 121

4.4.2 Marginal Density . 126

5 Statistical Risk for Greedy Bayes 129

5.1 Introduction . 129

5.2 An Overview of Greedy Optimization Procedures for Neural Networks . . 130

5.3 Arbitrary Sequence Regret . 135

5.4 IID Risk Control for Greedy Bayes . 149

iv

6 Additional Content and Discussion 157

6.1 Combining Continuous and Discrete Results 157

6.2 Optimization and Infinite Width Limits 164

6.3 Implications for Proven Hard Training Problems 166

6.3.1 Using a Larger Network than the Target 166

6.3.2 Application To Intersection of Half Spaces 170

Bibliography 175

v

List of Figures

3.1 Plot of Log Prior Probabilities for Different Discrete Priors 101

4.1 Flow Diagram for Recursive Greedy Fits 112

6.1 Comparison of difference of ReLU’s and tanh approximation 172

vi

List of Tables

3.1 Summary of Discrete Prior Likelihoods 100

3.2 Summary of Discrete Prior Likelihoods 100

vii

Acknowledgments

The road to complete my Ph.D. was a journey full of ups and downs, trials and victo-

ries. Over my 6 years at Yale I grew very much as a scholar and as a person, and I would

like to thank those who have supported me both personally and academically.

To my Ph.D. adviser Andrew Barron, who has been a wealth of knowledge and experi-

ence I have always been grateful to benefit from. Andrew never shied away from investing

time and effort into our research together. We met for many hours over the course of my

studies and they were always full with unique and creative ideas. I consider our work to-

gether a true collaboration with significant contribution from both Andrew and myself, as

we continue to pursue knowledge and understanding for its own sake.

To my undergraduate and master’s adviser Serdar Yüksel, who first helped me find my

interest in academia and taught me to be a scholar. His guidance placed me on my path

today, and I consider Serdar a mentor and a friend.

To all my classmates in the Statistics and Data Science department, especially Alex,

Vijay, and Colleen. SDS was a place to learn, grow, and a community which supported

each other. From board game nights to study sessions, it was never a path to walk alone.

To the St. Thomas More community, which was my spiritual home in New Haven.

To my sister Alexandra McDonald, the first Dr. McDonald but not the last. From a

young age we encouraged and challenged each other to go deeper and succeed in aca-

demics. Though we chose different careers later in life, we owe a lot to each other for

becoming who we are today, and share a bond to last a lifetime.

To my parents Doug and Nancy McDonald, whose love and support first gave me a

base to grow. My parents allowed me to find my passion in life, and encouraged me to

pursue it wherever it may take me. As I have traveled to pursue my dreams, I could rest

safe knowing their help was never far away.

Thank you all.

viii

Chapter 1

Introduction

In this work, we study a Bayesian method for training neural networks. We study con-

ditions under which Markov Chain Monte Carlo (MCMC) will be rapidly mixing for our

neural network posterior distributions. We show that MCMC will mix rapidly by a method

we call a Log-Concave Coupling. That is, given a target probability density p for a ran-

dom variablew, a log-concave coupling is a joint density with an auxiliary random variable

ξ with support set B, denoted q(w, ξ), such that

1. The marginal density of w is maintained, p(w) =
∫
B
q(w, ξ)dξ.

2. The marginal density of ξ is log-concave, q(ξ) =
∫
q(w, ξ)dw.

3. The reverse conditional density q(w|ξ) is log-concave for any conditional ξ in the

support set B.

MCMC algorithms are often shown to be rapidly mixing for log-concave target densities,

therefore a sample of w from the target posterior density p can be generated by first sam-

pling ξ from its marginal density, and then sampling w from its conditional density given

a ξ value.

Our Bayesian methods are considered in two parts: a joint sampling algorithm pro-

ducing a distribution on all parameters of the neural network at once, and a greedy Bayes

1

procedure which samples one neuron at a time based on the residuals of the previously

trained network. We demonstrate a log-concave coupling both in the joint sampling case,

and in the greedy case.

We also study the statistical risk and regret of estimators based on linear combinations

of posterior means. Our risk control and regret results are based on the method of the

Index of Resolvability. This requires that:

1. There exists at least one neural network that could fit our target function well.

2. Our prior places sufficiently large probability on a set of good estimation weights.

Given N data points of dimension d, our statistical risk results show the joint sampling

problem has a risk and regret control of O([(log d)/N]
1
4), while the greedy Bayes proce-

dure has a risk and regret control of O([(log d)/N]
1
3). We now review the motivation for

the problem, and define the specifics of our Bayesian model.

1.1 Approximation, Estimation, and Computation

One of the core problems in Statistical Learning Theory is to produce function estimators

by combining elements of a library of basis functions. Define a library H as a (possibly

uncountable) collection of functions from an input space X to an output space Y . For us,

it will suffice to consider X = Rd for some d and Y = R. We then consider the problem of

constructing linear combinations of elements of H. For some number of elementsK, make

a selection of elements of the library (hk)
K
k=1, hk ∈ H, and a selection of external weights

(ck)
K
k=1, ck ∈ R. We then construct a function f as a linear combination of elements of the

2

library

f : Rd → R (1.1)

x 7→
K∑
k=1

ckhk(x). (1.2)

The purpose of creating the function f is to fit some observed data sequence (xi, yi)
N
i=1

with xi ∈ Rd, yi ∈ R for each i. For a loss function L : R× R → R and some competitor

function g, we may want to find a function f that has small regret, which we define as

N∑
n=1

L(yn, f(xn))− L(yn, g(xn)). (1.3)

We may allow ourselves to pick a different function f̂n−1(·|xn−1, yn−1) at each index n

which is a function of the data (xi, yi)
n−1
i=1 up to that point. Then regret can be considered

for the online learning problem, where data up to index n − 1 is used to fit a function for

index n,

N∑
n=1

L(yn, f̂n−1(xn|xn−1, yn−1))− L(yn, g(xn)). (1.4)

Additionally, consider if the (Xi, Yi)
N
i=1 are random variables that come independently

and identically distributed (iid) from a data distribution PX,Y with EPY |X [Y |X] = g(X)

for some function g. Then our goal may be to find an f function with low statistical risk,

EPX [L(g(X), f(X))]. (1.5)

If we consider XN , Y N = (Xi, Yi)
N
i=1 as our training data, and XN+1 as some new data

point, consider if f̂(·|XN , Y N) is some predictor function based on the training data. Then

3

we can consider the risk as an expectation over both training data, and a new data point

EP
XN,Y N

[EPX [L(g(X), f̂(X|XN , Y N))]] (1.6)

The question then is what method do we use to map training instances XN , Y N to

functional approximators f̂ for future data. This selection method is referred to as an

algorithm which intakes training data instances and after some computation, outputs a

functional estimator f̂ which is a K linear combination of elements of our library H.

In studying algorithms for data fitting, there are three primary considerations: approx-

imation, estimation, and computation.

Approximation asks the question, given a library H and a target function g, what

bounds can be given for the ideal performance using the best K elements of the library

inf
hk∈H,ck∈R

EPX [L(g(X),
K∑
k=1

ckhk(X))]. (1.7)

If a library has poor approximation ability, then any algorithm for selecting elements of

that library will have poor risk. For example, linear models are poorly fit to non-linear

functions, so the application of linear models as approximators is limited. However, ap-

proximation tells us if a good estimator of g exists in my class, but does not indicate an

algorithm to select a good estimator based on data.

Estimation asks the question, given an algorithm that maps training instances (Xi, Yi)
N
i=1

to function estimators f̂(·|XN , Y N), what bounds can be given for the risk of these esti-

mators

EP
XN,Y N

[EPX [L(g(X), f̂(X|XN , Y N))]]. (1.8)

Simply because a good approximation for g exists, does not guarantee an algorithm will

4

be able to produce a realized function f̂ with similar risk.

Computation asks the question, how many tasks does my algorithm have to complete

as a function of the number of data points N , and dimension d. We ideally would like

an algorithm that has (low order) polynomial complexity in N and d, as algorithms with

exponential complexity in N and d are not practically useful as the values grow large.

Thus, approximation, estimation, and computation are three legs of the statistical learn-

ing stool, and if any one of them fails an algorithm is severely limited in its application.

However, it is quite difficult to find algorithms that satisfy all three considerations at once.

Algorithms with good estimation and computation but poor approximation can find a K

term combination of library elements with risk near the best possible combination, but

this risk is still poor. Algorithms with good approximation and computation but lacking

estimation quality have some function in the class that could fit the data and the algo-

rithm runs quickly, but produces fits f̂ that are nothing like the optimal combination and

have poor risk. Algorithms with good approximation and estimation but poor computation

could produce fits with near optimal risk, but the time required to compute this function

would be too long to be practical.

1.2 Algorithms for Neural Networks

Approximation is perhaps the first consideration among the three, as without good approxi-

mation even the best algorithm for selection can only perform so well. Single-hidden-layer

artificial neural networks provide a flexible class of parameterized functions for data fitting

applications, and this will be the function library H we study in this work.

Specifically, denote a single-hidden-layer neural network as the parameterized function

fw(x) = f(w, x) =
K∑
k=1

ckψ(wk · x), (1.9)

5

with K neurons, activation function ψ, and interior weights wk ∈ Rd. Fix a positive

scaling V and let the exterior weights ck be positive or negative values ck ∈ {− V
K
, V
K
}.

Thus, fw(x) is a convex combination of K signed neurons scaled by V . Constant and

linear terms c0 + w0 · x may be added in the definition of fw(x) to achieve additional

flexibility, though we will not address that matter explicitly.

We are interested in potentially wide networks where K may be large. The study of

deep nets (i.e. multi-layered) nets is a separate topic not addressed in this work, as we

focus on the single-hidden-layer class.

The approximation ability of these networks has been studied for many years, showing

which functions can be well approximated by some linear combination of neurons. It

is shown in [19] that any continuous function on a compact subset of Rd and in [29]

that any measurable function of finite L2(PX) norm can be well approximated by linear

combinations of sigmoid functions. These results however do not give explicit statement

of how the error relates to the specific width K of the network. This direction is taken up

in [7], tying rates of decay in the risk to the width of the network K and Fourier conditions

on the target function. These results initially allow for arbitrary sized internal neurons

weights, and arbitrary outer weights. In our work here, we control the interior weights

to have ∥wk∥1 ≤ 1 and |ck| ≤ V
K

. Nonetheless, in the original approximation results for

arbitrary sized neurons weights, consider if a target function f has complex valued Fourier

components f̃(ω),

f(x) =

∫
Rd
eiω·xf̃(ω)dω. (1.10)

Define Cf as the integral of the ℓ1 norm of ω times the magnitudes of the Fourier compo-

nents,

Cf =

∫
Rd

∥ω∥1|f̃(ω)|dω. (1.11)

6

Denote ΓC as the class of functions with Cf ≤ C. For any density µ over an ℓ∞ ball of

radius Br = {x ∈ Rd : ∥x∥∞ ≤ r}, any function f ∈ ΓC can be approximated by a

single-hidden-layer network fK with K neurons such that

∫
Br

(f(x)− fK(x))
2µ(dx) ≤ (2rCf)

2

K
. (1.12)

So functions with a finite Cf can be approximated by some linear combinations of neurons

to arbitrary small error with a sufficiently wide network.

If one specifically works with the ReLU activation function, these results also apply

when one forces bounded neuron weight vectors, and not just unbounded. However, when

working with general bounded increasing activation functions as in [7], the neuron weights

wk must be allowed to have unbounded components.

These original results put no restrictions on how large the components of the internal

weight vectors wk can be. To facilitate computation and estimation quality, we wish to

work only with weight vectors wk with bounded ℓ1 norm, ∥wk∥1 ≤ 1 [4, 36]. Denote

the set of signed neurons with ℓ1 controlled interior weights as the collection of functions

h : [−1, 1]d → R

Ψ = {h : h(x) = ±ψ(w · x), ∥w∥1 ≤ 1}. (1.13)

The closed convex hull of Ψ includes functions f which can be written as a possibly

infinite mixture of signed neurons, and functions which are the limit of a sequence of

such mixtures. Specializing the results of [6],[7],[36], networks of the form (1.9) provide

accurate approximation for functions f with f
V

in the closure of the convex hull of Ψ. The

infimum of such V is called the variation Vf of the function f with respect to the dictionary

Ψ. In [36] a variant of the condition on the Fourier components of f is also given that

would allow f to have finite variation Vf and hence to be accurately approximated using

7

convex combinations of elements of Ψ scaled by the variation, with bounded ℓ1 norm on

the weights. For target functions f of this form and any probability distribution PX on

[−1, 1]d, using a squared ReLU activation function, there exists a network fw∗ of the form

(1.9) with added constant and linear terms, with K neurons with ℓ1 controlled internal

weights, such that [36]

∥fw∗ − f∥2 ≤
V 2
f

K
, (1.14)

where ∥ · ∥2 is the L2(PX) norm.

The approximation with bound (1.14) is an existence result, a useful ingredient in

neural net analysis. Yet, by itself, it does not imply anything about the estimation ability

of training algorithms based on a finite set of N data points (xi, yi)Ni=1 independently and

identically distributed (iid) from a data distribution PX,Y . Currently, the best known results

show that for a bounded target function |f | ≤ b, finding the set of neuron parameters that

minimize the empirical squared error,

ŵ = argmin∥wk∥1≤1,k∈{1,...,K}

N∑
i=1

(yi − fw(xi))
2, (1.15)

with a network width K = O([N/(log d)]1/2) yields a statistical risk control of the order

[11]

E[∥fŵ − f∥2] = O(
(log(d)

N

) 1
2
), (1.16)

provided there is sub-Gaussian control of the distribution of the response Y . The expecta-

tion here is with respect to the training data, while the norm square provides the expecta-

tion for the loss at an independent new input vector. Analogous deep net conclusions are

also in [10], [11].

8

There has been much research to understand theoretically the optimization of neural

networks via gradient based methods [15, 58, 24, 33, 45]. These approaches work by

comparing the network to a certain infinite width limit under initialization and scaling

assumptions (called the neural tangent kernel, NTK), where the network trained under

gradient descent approaches a kernel ridge regression solution. They also utilize a scaling

of 1/
√
K on their outer weights rather than the 1/K scaling we use.

When choosing network size for favorable statistical risk, we prefer to work with K <

N . Indeed, our later results will show K = O([N/(log d)]1/4) is an appropriate size for

statistical risk control. Then, even in the single-hidden-layer case, no known optimization

algorithm is able to solve this optimization problem in a polynomial number of iterations

in N and d. Thus, approximation and estimation has been well studied for optimization

algorithms on neural networks, but pairing this analysis with computational complexity

bounds has remained elusive.

1.3 Bayesian Model

Instead of optimization procedures, we use a Bayesian method of estimation placing a

posterior distribution on neuron parameters. We will build upon the proven approxima-

tion results for the class of neural networks, establish estimation bounds via risk control

that is comparable to the optimization procedures, and establish computational complexity

control.

Bayesian neural networks have been studied for many years [52, 25, 16], although

specific mixing time bounds for MCMC to guarantee polynomial time complexity have

been a barrier to their implementation. Recent approaches have studied the simplification

of the posterior in the NTK regime, resulting in the posterior being near the posterior

associated with a Gaussian process prior [30, 28]. These approaches requireK/N → ∞ to

achieve that simplification of the posterior density. The bounded K/N setting is shown in

9

[30, 28] to be distinct with potentially more flexible non-Gaussian process behavior. In our

work we consider K < N . Our optimal risk control results will have K = [N/(log d)]1/4

in the joint sampling case, andK = [N/(log d)]1/3 log([N/(log d)]1/3) in the greedy Bayes

procedure. Therefore, our posterior densities are in the regime where flexibility arises in

our model and the internal weights are adapted by the posterior.

Say we have data consisting of N input and response pairs (xi, yi)
N
i=1. Define a

prior distribution P0 on RKd, with density p0 with respect to a reference measure η (e.g.

Lebesgue or counting measure). For each index i ∈ {1, . . . , N} define the residual of a

neural network as

resi(w) = yi −
K∑
k=1

ckψ(wk · xi). (1.17)

For any subset of the data n ≤ N , define the n-fold loss function as half the sum of squares

of the first n residuals

ℓn(w) =
1

2

n∑
i=1

(resi(w))2. (1.18)

Define a gain or inverse-temperature parameter β > 0. Then for every n ≤ N , define

a sequence of posterior densities trained on subsets of the data xn, yn ≡ (xi, yi)
n
i=1, by

pn(w|xn, yn) =
p0(w)e

−βℓn(w)∫
e−βℓn(w)p0(w)η(dw)

. (1.19)

Denote the mean with respect to this density, the n-th posterior mean, as

µn(x|xn, yn) = EPn [f(w, x)|xn, yn], (1.20)

where EPn [·] denotes expectation with respect to the indicated distribution. For a given

weight vector w, define the predictive density p(y|x,w) to be Normal(f(x,w), 1
β
). Define

10

the n-th posterior predictive density as

pn(y|x, xn, yn) = EPn [p(y|x,w)|xn, yn]. (1.21)

For convenience, we may drop the notation conditioning on xn, yn and simply refer to the

density as pn(w), and similarly for the mean and predictive density.

Define the Cesàro average posterior as,

qavg(w|xN , yN) = 1

N + 1

N∑
n=0

pn(w|xn, yn). (1.22)

Also define the Cesàro average of the posterior means and the Cesàro average predictive

density

ĝ(x) =
1

N + 1

N∑
n=0

µn(x|xn, yn), (1.23)

and

qavg(y|x, xN , yN) = 1

N + 1

N∑
n=0

pn(y|x, xn, yn). (1.24)

A typical Bayesian may be confused why we work with the Cesàro average and why we

condition on different subsets of the data. Indeed, the posterior distribution using all the

data pN(w|xN , yN) and its posterior mean µN(x|xN , yN) are the only objects studied in

most Bayesian investigations, as these produce optimal performance in a Bayes risk sense,

averaging functions over choices of w with respect to the prior, as explained further below

(equation (1.49) and the surrounding discussion). However, our choice of prior is not

a matter of subjective belief, but rather a computational device to produce estimators of

provable quality. Thus we are interested not just in such average risk, but also in what can

be said for risk bounds for arbitrary g in the closure of the convex hull of VΨ. This we will

do with estimators constructed from the sequence of posteriors pn(w|xn, yn) with n ≤ N ,

11

rather than just the posterior based on all the training data.

There are additional reasons we may be interested in the different subset defined pos-

teriors. One reason is in an online learning problem, we may predict yn using the posterior

mean trained on data up to index n− 1 and consider the regret

1

N

N∑
n=1

(yn − µn−1(xn|xn−1, yn−1))2 − (yn − g(xn))
2. (1.25)

Furthermore, the predictive densities have a nice interpretation using Bayes factors. If we

define

Zn =

∫ (β
2π

)n
2 e−

β
2

∑n
i=1(yi−fw(xi))2P0(dw), (1.26)

then the posterior predictive densities are equal to the ratio of successive Bayes factors

pn(yn+1|xn+1, x
n, yn) =

Zn+1

Zn
. (1.27)

When one considers logarithmic notions of regret, this results in a nice chain rule for

information theory which we take advantage of in our risk analysis.

We also construct a greedy Bayes model, where each neuron is trained one at a time

based on the residuals of previous fits. The construction of this model is more involved,

using a sequence of recursively defined posterior densities. Details of its construction are

presented in Chapter 4 of the thesis.

12

1.3.1 Choice of Prior

We consider two priors in the course of the thesis. Define the set Sd1 as the ℓ1 ball of unit

norm,

Sd1 = {w ∈ Rd : ∥w∥1 ≤ 1}. (1.28)

For some positive integer M ≤ d, consider the discrete set which is the intersection of Sd1

with the lattice of points of equal spacing 1
M

. Define this set as Sd1,M ,

Sd1,M = {w :Mw ∈ {−M, . . . ,M}d, ∥w∥1 ≤ 1}. (1.29)

That is, each coordinate wk,j can only be integer multiples of the grid size 1
M

and we force

the ℓ1 norm to be less than or equal to 1. Define the K fold product of these sets as (Sd1)
K

and (Sd1,M)K .

The first prior we will consider is uniform on the set (Sd1)
K . That is, independently

each weight vector wk is uniform on Sd1 . This can be constructed by the vector of absolute

values |wk| being Dirichlet(1, 1, . . . , 1) and the signs of each coordinate are independent

Rademacher random variables. This has the density function

p0(w) =
K∏
k=1

(
1{∥wk∥1 ≤ 1} 1

Vol(Sd1)

)
. (1.30)

with respect to Lebesgue measure.

We will also consider a discrete version of this density. We consider the prior under

which wk is independent uniform on the discrete set Sd1,M . This has probability mass

13

function

p0(w) =
K∏
k=1

(
1{wk ∈ Sd1,M} 1

|Sd1,M |

)
. (1.31)

with respect to counting measure in (Sd1,M)K . When d is large one may choose a smaller

order M to arrange sparsity in the weight vector, as at most M of the d coordinates can

be non-zero. Furthermore, we have a bound on the cardinality of the support set |SdM | ≤

(2d+1)M which will prove useful in future statistical risk analysis. Most notably, log |SdM |

only grows logarithmically in the dimension d of the weight vectors.

We can also consider both of these priors as specific marginals of a joint coupled

Dirichlet and Multinomial distribution. We arrange a continuous vector wcont ∈ (Sd1)
K

and a discrete vector wdisc ∈ (Sd1,M)K . Say the signs of each coordinate wcont
k,j are dis-

tributed as independent Rademacher. Then, for each index k, the vector of absolute values

(|wcont
k |, |wdisc

k |) are independent and distributed as follows. |wcont
k | is uniform on the d+ 1

dimensional simplex, which is symmetric Dirichlet using the all 1’s parameter vector.

Then |wdisc
k | conditioned on |wcont

k | is distributed as 1/M times a Multinomial(M, |wcont|)

distribution. This results inwcont andwdisc being marginally uniform on (Sd1)
K and (Sd1,M)K

respectively, but being coupled via this joint distribution.

The continuous prior will be used to prove the log-concave coupling form of our target

density, but the finite size of the support of the discrete prior will prove useful for statistical

risk control. We are ultimately unable to extend the risk control of the discrete prior to the

continuous prior as well, but discuss in Chapter 6 a method that may allow the results to

be connected.

14

1.4 Log-Concave Coupling

Consider the log-likelihood of the posterior densities pn(w) as defined in equation (1.19),

with the continuous uniform prior on (Sd1)
K . The log-likelihood and score of the pos-

terior within the constrained set are equal to (with some constant B that is just the log

normalizing constant)

log pn(w) = −βℓn(w) +B (1.32)

∇wk log pn(w) = β
n∑
i=1

resi(w)(ckψ′(wk · xi)xi). (1.33)

Denote the Hessian asHn(w) ≡ ∇2 log pn(w). The density pn(w) is log-concave ifHn(w)

is negative definite for all choices of w. For any vector u ∈ RKd, with blocks uk ∈ Rd, the

quadratic form uTHn(w)u can be expressed as

− β
n∑
i=1

(K∑
k=1

ckψ
′(wk · xi)uk · xi

)2

(1.34)

+ β
n∑
i=1

resi(w)
K∑
k=1

ckψ
′′(wk · xi)(uk · xi)2. (1.35)

It is clear that for any vector u the first line (1.34) is a negative term, but term (1.35) may

be positive. The scalar values ckψ′′(wk ·xi) could be either a positive or negative value for

each k and i, while the residuals resi(w) can also be positive or negative signed. Thus, the

Hessian is not a negative definite matrix in general and pn(w) may not be a log-concave

density.

The term (1.35) is capturing how the non-linearity of ψ, which provides the benefit of

neural networks over linear regression, is complicating matters. If ψ were linear, ψ′′(z) =

0 for all z and we would have a simple linear regression problem. However, since ψ has

second derivative contributions, this term must be addressed.

15

For each data index i ∈ {1, . . . , n} and each neuron index k ∈ {1, . . . , K} we intro-

duce a coupling with an auxiliary random variable ξi,k. The goal of this auxiliary random

variable is to force the corresponding individual i, k terms in (1.35) to be negative.

For a value ρ > 0, conditioning on a weight vector w, define the forward coupling as

conditionally independent random variables ξi,k which are normal with mean wk ·xi and

variance 1
ρ
,

ξi,k ∼ Normal(wk ·xi,
1

ρ
). (1.36)

This then defines a forward conditional density (or coupling)

pn(ξ|w) ∝ e−
ρ
2

∑
i,k(ξi,k−xi·wk)2 , (1.37)

and a joint density for w, ξ,

pn(w, ξ) = pn(w)pn(ξ|w). (1.38)

Via Bayes’ rule, this joint density also has expression using the induced marginal on the

auxiliary ξ random vector and the reverse conditional density on w|ξ,

pn(w, ξ) = pn(ξ)pn(w|ξ). (1.39)

We will show, with slight modification of ξ to restrict its domain to a highly likely set

ξ ∈ B and with properly chosen ρ, this choice of normal forward coupling provides a

negative definite correction to the Hessian of the log-likelihood of pn(w|ξ) compared to

what we had with pn(w), resulting in a log-concave reverse conditional density.

16

Furthermore, when the dimension d and number of neurons K exceed

Kd ≥ C(βN)2 (1.40)

for a given constant C, then the induced marginal density p(ξ) is log-concave as well.

Further discussion of the specifics of the log-concave coupling for the joint distribution is

provided in Chapter 2, and construction in the greedy case is provided in Chapter 4.

1.5 Risk and Regret

When analyzing the performance of our posterior estimators, we will consider two main

measures of performance: arbitrary sequence regret, and statistical risk.

For arbitrary sequence regret, let (xi, yi)Ni=1 be an arbitrary sequence of inputs and

response values with no assumption on the underlying data relationship between xi and yi.

Consider g as an arbitrary competitor function we wish to measure our Bayesian posteriors

against.

Then we define notions of square regret, randomized regret, and log regret as follows

Rsquare =
1

N

N∑
n=1

1

2

[
(yn − µn−1(xn|xn−1, yn−1))2 − (yn − g(xn))

2
]

(1.41)

Rrand =
1

N

N∑
n=1

1

2

[
EPn−1 [(yn − f(xn, w))

2|xn−1, yn−1]− (yn − g(xn))
2
]

(1.42)

Rlog =
1

N

N∑
n=1

[log 1
pn−1(yn|xn,xn−1,yn−1)

β
− 1

2
(yn − g(xn))

2
]
. (1.43)

Our regret analysis will primarily focus on log regret, as this has connections to infor-

mation theory via a chain rule and can be upper bounded by the index of resolvability

method. Random regret and squared regret can then be related to upper bounds on log re-

17

gret. Regret analysis for the joint sampling problem is presented in Chapter 3, with greedy

analysis presented in Chapter 5. As a summary of our results, the joint sampling problem

has a bound on square regret of the orderO([(log d)/N]
1
4), while the greedy Bayes method

provides an improved bound of the order O([(log d)/N]
1
3), relative to the regret of g with

respect to its projection into the closure of the convex hull of signed neurons g̃.

For statistical risk, we use the loss function which is half the squared difference

L(g(X), f(X)) =
1

2
(g(X)− f(X))2. (1.44)

We use half the squared difference, as it has better connection with the log-likelihood of a

normal random variable. We see that comparing the log probabilities of normal distribu-

tions,

log 1
p(y|x,w)

β
−

log 1
q(y|g(x))

β
(1.45)

=
1

β

[
− log[(

β

2π
)
1
2 e−

β
2
(y−fw(x))2] + log[(

β

2π
)
1
2 e−

β
2
(y−g(x))2]

]
(1.46)

=
1

2
(y − fw(x))

2 − 1

2
(y − g(x))2 (1.47)

the 1/2 appears as a natural term. Thus incorporating the half into our notion of loss

allows for simpler relationship with logarithmic regret, which is a key tool of our method

to bound statistical risk.

Assume the data (Xi, Yi)
N
i=1 are iid from a data distribution with E[Y |X] = g(X).

Then squared risk of the Cesàro average of the posterior means is expressed as

EP
XN,Y N

[EPX [
1

2
(g(X)− ĝ(X))2]]. (1.48)

Note that even though the estimator ĝ is defined by Bayesian posterior means, this is a

frequentist notion of risk.

18

In a fully Bayesian analysis of risk, we would assume a set of target weights w∗ is

drawn from our prior P0, and then g = fw∗ defines the data distribution that generates X

and Y . Then the Bayesian notion of risk would be the expectation over P0 of the different

risks at different w∗ values,

EP0 [EPXN,Y N [EPX [
1

2
(fw∗(X)− ĝ(X))2]]]. (1.49)

Then it is clear the Bayesian posterior mean using all the data µN(X|XN , Y N) would

optimize this notion of risk [42, Chapter 4, Thm 1.1 and Cor 1.2].

Yet this is not the perspective we take. This method of Bayesian risk analysis assumes

the prior P0 which defines our Bayesian model actually defines how the g function is

realized. Furthermore, two different Bayesians with different priors would have to fight

about who has the “optimal” posterior mean, and both could claim their posterior mean is

the optimal estimator with respect to the prior they define.

We do not view our Bayesian model as actually defining the distribution of anything

about PX,Y and g. Our prior P0 and posterior based on squared loss is a computational tool

for the purposes of producing a posterior mean. We do not assume that g is itself some

neuronal network fw∗ , nor that Y |X is normal (which would correspond to our choice of

square loss, if we interpreted our posteriors as coming from a choice of forward likelihood

paired with a prior). We allow g to be whatever function it may be, and still prove that our

Bayesian method, as a computational tool, produces the Cesàro average of the posterior

means as a good estimator for g. If g is not a neural network, and g̃ is its L2(PX) projection

into the closure of the convex hull of signed neurons scaled by V , we show

EP
XN,Y N

[EPX [
1

2
(g(X)− ĝ(X))2]] = O(

(log(d)
N

) 1
4) + EPX [

1

2
(g(X)− g̃(X))2]. (1.50)

The greedy Bayes estimator can achieve O([(log d)/N]
1
3). For the Cesàro average of the

19

posterior means, the square risk can be interpreted as an expected square regret, so much

of our risk analysis follows first from analyzing regret and adapting these results from a

worst case to an average case analysis.

1.6 Notation

Here we present the mathematical notation used in the thesis.

• Capital P refers to a probability distribution, while lowercase p is its probability

mass or density function.

• f ′(·) refers to the derivative of a scalar function f .

• ∇ is the gradient operator and ∇2 is the Hessian operator, producing a matrix of

second derivatives.

• {1, . . . , N} is the set of whole numbers between 1 and N.

• [a, b] is the interval of real values between a and b.

• u · v is the Euclidean inner product between two vectors.

• uT,XT refers to the transpose of a vector or matrix, so quadratic forms of a vector u

with the matrix X will be written as uTXu.

• ∥w∥p refers to the ℓp norm, ∥w∥p = (
∑

j(wj)
p)

1
p .

• The ℓ1 ball is denoted as Sd1 = {w ∈ Rd : ∥w∥1 ≤ 1}.

• The K fold Cartesian product of this set is (Sd1)
K .

• For variables in a sequence, superscripts indicate the set of variables Xn = (Xi)
n
i=1.

20

• For a data sequence (xi, yi)
N
i=1, given a function f associate it with the vector with

coordinates equal to the function outputs fi = f(xi). For any two vectors of length

N define the empirical squared norm and inner product

∥h1 − h2∥2N =
N∑
i=1

(h1,i − h2,i)
2 ⟨h1, h2⟩N =

N∑
i=1

h1,ih2,i

• Logarithms in the thesis are natural logarithms.

21

Chapter 2

Log-Concave Coupling for Joint
Sampling

2.1 Introduction

Consider the log-likelihood of the posterior densities pn(w) as defined in equation (1.19),

with the continuous uniform prior on (Sd1)
K . Let η be a reference measure, which in

this case is Lebesgue measure. As discussed in the introduction, the Hessian of the log-

likelihood for pn(w) is not negative definite, so pn(w) is not a log-concave density. Our

definition of a log-concave coupling is a joint density with an auxiliary random variable

ξ under which w maintains the same marginal density, the induced marginal density for ξ

is log-concave, and the reverse conditional density for w|ξ is log-concave for all ξ in the

support of the joint density.

Note that to maintain the the marginal density ofw, we must define our ξ via a choice of

forward coupling. That is, with pn(w) as our target density we define a forward conditional

density pn(ξ|w) conditioned on w and then define our joint density as

pn(w, ξ) = pn(w)pn(ξ|w). (2.1)

22

Then this defines an induced marginal on ξ by integrating out the w variable,

p(ξ) =

∫
pn(w)pn(ξ|w)η(dw). (2.2)

Then via Bayes’ rule, this also defines a reverse conditional density on w|ξ as

pn(w|ξ) =
pn(w)pn(ξ|w)

pn(ξ)
. (2.3)

Consider the log-likelihood of the reverse conditional density,

log pn(w|ξ) = log pn(w) + log pn(ξ|w)− log pn(ξ). (2.4)

log pn(ξ|w) will be seen to be a concave function in w (it is essentially a negative cumulant

generating function). Thus, this term will add negative definite correction to the reverse

conditional density’s log-likelihood Hessian. With enough correction, we can overpower

any positive definite terms in the Hessian of log pn(w) and produce an overall log-concave

reverse conditional density. We then must study if the marginal density for ξ is also log-

concave under this construction.

For each data index i ∈ {1, . . . , n} and each neuron index k ∈ {1, . . . , K} we intro-

duce a coupling with an auxiliary random variable ξi,k. Define the values

Cn = max
i≤n

|yi|+ a0V (2.5)

ρn = ρn,K = a2
βCnV

K
. (2.6)

We will consider our posterior densities with one fixed value of n at a time. Likewise think

of K as fixed, so we will refer to these values as constants in our discussion. We will work

with ρ = ρn,K when it is clear we are talking about a fixed n and K value.

Ultimately we will use bounded auxiliary random variables to yield the desired log-

23

concave coupling. But to motivate the construction first consider tentatively a simpler

unbounded construction.

Conditioning on a weight vector w, define the forward coupling as conditionally inde-

pendent random variables ξi,k which are normal with mean wk ·xi and variance 1
ρ
,

ξi,k ∼ Normal(wk ·xi,
1

ρ
). (2.7)

This then defines a forward conditional density (or coupling)

pn(ξ|w) ∝ e−
ρ
2

∑
i,k(ξi,k−xi·wk)2 , (2.8)

and a joint density for w, ξ,

pn(w, ξ) = pn(w)pn(ξ|w). (2.9)

2.2 Reverse Conditional Density

First, we allow for ξi,k to take arbitrary real values arising from the conditional normal

distribution.

Theorem 2.1. Under the continuous uniform prior and ξi,k ∼ Normal(xi · wk, 1/ρ) for

the given choice of ρ, the reverse conditional density pn(w|ξ) is log-concave for the given

ξ coupling.

Proof. The log-likelihood for pn(w|ξ) is given by

log pn(w|ξ) =− βℓn(w) +Bn(ξ) (2.10)

−
n∑
i=1

K∑
k=1

ρ

2
(ξi,k − wk · xi)2, (2.11)

24

for some function Bn(ξ) which does not depend on w and is only required to make the

density integrate to 1. The term (2.11) is a negative quadratic in w which treats each wk

as an independent normal random variable. Thus, the additional Hessian contribution will

be a (Kd) × (Kd) negative definite block diagonal matrix with d × d blocks of the form

ρ
∑n

i=1 xix
T
i . Denote the Hessian as Hn(w|ξ) ≡ ∇2 log pn(w|ξ). For any vector u ∈ RKd,

with blocks uk ∈ Rd, the quadratic form uTHn(w|ξ)u can be expressed as

− β
n∑
i=1

(K∑
k=1

ckψ
′(wk · xi)uk · xi

)2

(2.12)

+
K∑
k=1

n∑
i=1

(uk · xi)2[βresi(w)ckψ′′(wk · xi)− ρ]. (2.13)

By the assumptions on the second derivative of ψ and the definition of ρ we have

max
i,k

(βresi(w)ckψ′′(wk · xi)− ρ) ≤ 0. (2.14)

So all the terms in the sum in (2.13) are negative. Thus, the Hessian of the log-likelihood

of pn(w|ξ) is negative definite and pn(w|ξ) is a log-concave density.

While this proof offers a simple way to make a conditional density pn(w|ξ) which

is log-concave, we also wish to study if there is log-concavity of the induced marginal of

pn(ξ). The joint log-likelihood for pn(w, ξ) contains a bilinear term in ξ, w from expanding

the quadratic,

K∑
k=1

d∑
j=1

wk,j

n∑
i=1

ξi,kxi,j. (2.15)

We want some control on how large this term can become, so we restrict the allowed

25

support of ξ. We define a slightly larger ρ = ρn,K value than before,

ρn,K =

√
3

2
a2
βCnV

K
. (2.16)

For a positive δ ≤ 1/16, we also define a constrained set,

B =
{
ξi,k : max

j,k
|

n∑
i=1

xi,jξi,k| ≤ n+

√
2 log(

2Kd

δ
)

√
n

ρ

}
. (2.17)

We then define our forward conditional distribution for p∗n(ξ|w) = pn(ξ|w,B) as the nor-

mal distribution restricted to the set B,

p∗n(ξ|w) = pn(ξ|w,B) =
1B(ξ)pn(ξ|w)
Pn(ξ ∈ B|w)

(2.18)

= 1B(ξ)

∏n
i=1

∏K
k=1

(
ρ
2π

) 1
2 e−

ρ
2
(ξi,k−xi·wk)2∫

B

∏n
i=1

∏K
k=1

(
ρ
2π

) 1
2 e−

ρ
2
(ξi,k−xi·wk)2dξ

. (2.19)

Under this constrained density, the term (2.15) will be bounded for any choice of ξ ∈ B

and wk ∈ Sd1 , which will be a useful property in later proofs.

The denominator of this fraction is the normalizing constant of the density as a result of

the restricting set B. Denote the log normalizing constant as Z(w) = log[Pn(ξ ∈ B|w)],

Z(w) = log

∫
B

n∏
i=1

K∏
k=1

(ρ
2π

) 1
2 e−

ρ
2
(ξi,k−xi·wk)2dξ. (2.20)

An equivalent expression for the forward coupling is then

p∗n(ξ|w) = 1B(ξ)
(ρ
2π

)
NK
2 e−

ρ
2

∑
i,k(ξi,k−xi·wk)2−Z(w). (2.21)

This construction also yields for ξ ∈ B the induced marginal density p∗n(ξ) with respect to

26

Lebesgue measure,

p∗n(ξ) =

∫
pn(w)p

∗
n(ξ|w)η(dw) =

1B(ξ)
∫
pn(w)e

− ρ
2

∑
i,k(ξi,k−xi·wk)2−Z(w)η(dw)∫

B

∫
pn(w)e

− ρ
2

∑
i,k(ξi,k−xi·wk)2−Z(w)η(dw)dξ

,

(2.22)

and the reverse conditional density p∗n(w|ξ) with respect to reference measure η,

p∗n(w|ξ) =
pn(w)p

∗
n(w|ξ)

p∗n(ξ))
=

pn(w)e
− ρ

2

∑
i,k(ξi,k−xi·wk)2−Z(w)∫

pn(w)e
− ρ

2

∑
i,k(ξi,k−xi·wk)2−Z(w)η(dw)

. (2.23)

Note these densities differ from the pn(w|ξ) and pn(ξ) defined before without restricting

to the set B due to the presence of the Z(w) function. We then show that for ξ ∈ B the

density p∗n(w|ξ) is a very similar density to pn(w|ξ) and also log-concave.

The restriction of ξ to the set B is the restriction to a very likely set under the uncon-

strained coupling, in particular we have the following:

Lemma 2.1. For any weight vector w with ∥wk∥1 ≤ 1 the set B in (2.17) has probability

under p(ξ|w) at least

P (ξ ∈ B|w) ≥ 1− δ√
2 log(2Kd/δ)

. (2.24)

Proof. See Appendix, Section 2.6.1.

Furthermore, the functionZ(w) is nearly constant, having small first and second deriva-

tive. Therefore, the function has little impact on the log-likelihood.

Lemma 2.2. For any specified vector u ∈ RKd, define the value

σ̃2 =

∑n
i=1

∑K
k=1(uk · xi)2

ρ
. (2.25)

27

For positive values δ ≤ 1/16 with Kd ≥ 4, we then have upper bounds,

|u · ∇Z(w)| ≤ ρσ̃

1− δ

δ√
2π

(2.26)

and

|uT(∇2Z(w))u| ≤ ρ2σ̃2

√
2π

δ

1− δ

(
2
√
2 log(1/δ) +

ρ2σ̃2

√
2π

δ

1− δ

)
. (2.27)

Note both bounds go to 0 as δ → 0, and thus can be made arbitrarily small for a certain

choice of δ.

Proof. See Appendix, Section 2.6.1.

Thus, with restriction to the set B, whose size is determined by δ, and a slightly larger

ρ, we can give a similar result to Theorem 2.1. Note this result is for p∗n(w|ξ) which is

distinct from pn(w|ξ) due to the presence of the Z(w) function in the log-likelihood and

the restriction to ξ ∈ B.

Theorem 2.2. Define the notation

H1(δ) =
2√
2π

δ

1− δ

√
2 log

2

δ
(2.28)

H2(δ) =
(
a2
βCnV

K

)2 1

2π

δ2

(1− δ)2
. (2.29)

Assume a sufficiently small δ ≤ 1
16

that satisfies

H1(δ) ≤
1

100
(2.30)

H2(δ) ≤
1

10
. (2.31)

For the continuous uniform prior, with ξ restricted to the set B defined by δ, and ρ as in

equation (2.16), the reverse conditional density p∗n(w|ξ) is a log-concave density in w, for

28

any ξ in B.

Proof. See Appendix, Section 2.6.2.

Corollary 2.1. A positive δ which satisfies,

δ ≤ min
(1

300
,

√
2π

11

K

a2βCNV

)
, (2.32)

will satisfy conditions (2.30), (2.31).

The pairing of a normal forward coupling to p∗n(ξ|w) with a target density pn(w) to

produce a reverse conditional p∗n(w|ξ) which is log-concave is not a new idea. As we

will later discuss, the same concept is used in proximal sampling methods and diffusion

models. However, in this work we go further in stating that the induced marginal on p∗n(ξ)

is itself log-concave, which we call a log-concave coupling.

2.3 Marginal Density

Lemma 2.3. The score and Hessian of the induced marginal density for p∗n(ξ) for ξ ∈ B

are expressed as

∂ξi,k log p
∗
n(ξ) =− ρ ξi,k + ρ xi · EP ∗

n
[wk|ξ] (2.33)

∂ξi1,k1 ,ξi2,k2 log p
∗
n(ξ) =− ρ1{(i1, k1) = (i2, k2)} (2.34)

+ ρ2CovP ∗
n
[wk1 · xi1 , wk2 · xi2|ξ]. (2.35)

Equivalently in vector form using the n by d data matrix X,

∇ log p∗n(ξ) = ρ
(
− ξ + EP ∗

n

[
Xw1
...

XwK
|ξ
])

(2.36)

∇2 log p∗n(ξ) = ρ
(
− I + ρCovP ∗

n

[
Xw1
...

XwK
|ξ
])
. (2.37)

29

Proof. The stated results are a consequence of simple calculus, but we will derive them

using a statistical interpretation that avoids tedious calculations.

The log-likelihood of the induced marginal for p∗n(ξ) is equal to the log of the joint

density with w integrated out,

log p∗n(ξ) = log
(∫

pn(w)p
∗
n(ξ|w)η(dw)

)
. (2.38)

Rearranging the log-likelihood of the Gaussian forward conditional, this can be expressed

as a quadratic term in ξ and a term which represents a cumulant generating function plus

a constant. Recall Z(w) as defined in equation (2.20). Denote the function

h(w) = −βℓn(w)−
ρ

2

n∑
i=1

K∑
k=1

(wk · xi)2 − Z(w), (2.39)

which is the part of the log-likelihood of the joint density which does not depend on ξ.

The marginal pdf can then be expressed as

log p∗n(ξ) = −ρ
2
∥ξ∥22 (2.40)

+ log
(∫

p0(w)e
h(w)eρ

∑n
i=1

∑K
k=1 ξi,kwk·xiη(dw)

)
+ C, (2.41)

for some constant C which makes the density integrate to 1. Note that ξ is restricted to

have support only on the set B, so there is an indicator of the set B we do not write in the

expression for simplicity.

It is clear the term (2.41) is the cumulant generating function of the random variable

u(w) defined by

u(w) = ξ ·
(

Xw1
...

XwK

)
, (2.42)

when w is distributed according to the density proportional to p0(w)eh(w). Thus, the gra-

30

dient in ξ is the mean of the vector and the second derivative is the covariance, as are

standard properties of derivatives of cumulant generating functions. The density being

integrated is a tilting of the log-likelihood defined by h(w), and this tilted density is the

reverse conditional p∗n(w|ξ).

We highlight two important consequences of this result.

Corollary 2.2. The score ∇ log p∗n(ξ) is expressed implicitly as a linear transformation of

the expected value of the log-concave reverse conditional p∗n(w|ξ).

Proof. This is a simple consequence of (2.33) or (2.36).

Remark 2.1. Therefore, while we do not have an explicit closed form expression for the

score of the marginal density, it can be estimated using an MCMC method and thus is read-

ily available for use. In particular, to run an MCMC algorithm such as ULA or MALA

on the marginal density p∗n(ξ), the score is needed. Any time the score needs to be eval-

uated, it can be computed via its own MCMC algorithm for p∗n(w|ξ) as needed and then

utilized in the sampling algorithm for ξ itself. Possible sampling algorithms for p∗n(ξ) are

discussed in Section 2.5.4.

Corollary 2.3. The density p∗n(ξ) is log-concave if for any unit vector u ∈ RnK , with

blocks uk ∈ Rn, the variance of a particular linear combination of w, namely

v(w) =
K∑
k=1

uT
kXwk, (2.43)

with respect to the reverse conditional p∗n(w|ξ) is less than 1/ρ ,

VarP ∗
n
[v(w)|ξ] ≤ 1/ρ, (2.44)

for ξ in the convex support set B.

31

Proof. This is a simple consequence of (2.37).

Therefore, to show that p∗n(ξ) is log-concave we must provide an upper bound on the

covariance of w using the reverse conditional density p∗n(w|ξ). Note that such conditional

expectation and conditional covariance representations would also hold using pn(ξ), which

is defined without conditioning on the set B and thus does not include the Z(w) in the

joint likelihood. However, the restrictions imposed on maximum inner products by the

definition of B will prove useful in upper bounding the reverse conditional covariance.

2.4 Conditional Covariance Control

The log-likelihood for p∗n(w|ξ) is the log-likelihood of the prior density plus an additional

concave term. Under a log-concave prior, one would expect that adding a concave term

to the exponent of an already log-concave density should result in less variance in every

direction. Thus one can conjecture the prior covariance would be more than the conditional

covariance for any conditioning value,

CovP0 [w] ≻ CovP ∗
n
[w|ξ] ∀ξ ∈ B. (2.45)

Under a Gaussian prior, such a statement would follow easily from the Brascamp-Lieb

inequality [14, Proposition 2.1]. However, for the uniform prior on a convex set, this

method does not directly apply.

The covariance matrix of the uniform prior on (Sd1)
K is diagonal (note the different co-

ordinates are uncorrelated but not independent due to symmetry) with entries VarP0(wk,j) =

d
(d+1)2(d+2)

≤ 1
d2

which follows from properties of the Dirichlet distribution. Thus, under

32

conjecture (2.45) we would expect a bound of the form

ρVarP ∗
n
[v(w)|ξ] ≤

√
3

2
a2
βCnV

Kd2

d∑
j=1

K∑
k=1

(
n∑
i=1

ui,kxi,j)
2 (2.46)

≤
√

3

2
a2
βCnV

Kd

K∑
k=1

∥uk∥21 (2.47)

≤
√

3

2
a2
βnCnV

Kd

K∑
k=1

∥uk∥22 (2.48)

=

√
3

2
a2CnV

βn

Kd
(2.49)

≤
√

3

2
a2
CNV βN

Kd
. (2.50)

Thus for Kd > C(βN) for some value C we would have log-concavity of the marginal.

However, we are unable to prove this conjecture is true. Instead, using a different approach

we will conclude for a specified C,

Kd ≥ C(βN)2 (2.51)

results in log-concavity of the marginal density.

Instead of recreating an inequality like (2.45), we must take a different approach to

upper bound the variance in any direction. Denote the function,

hnξ (w) = −βℓn(w)−
n∑
i=1

K∑
k=1

ρ

2
(ξi,k − wk · xi)2 − Z(w). (2.52)

Denote the function shifted by its mean under the prior as

h̃nξ (w) = hnξ (w)− EP0 [h
n
ξ (w)]. (2.53)

33

Define its cumulant generating function with respect to the prior as

Γnξ (τ) = logEP0 [e
τh̃nξ (w)]. (2.54)

Lemma 2.4. For any integer ℓ ≥ 1 and for any vector u ∈ RKd we have the upper bound

VarP ∗
n
(u · w|ξ) ≤

(
EP0 [(u · w)2ℓ]

) 1
ℓ
e
ℓ−1
ℓ

Γnξ (
ℓ
ℓ−1

)−Γnξ (1). (2.55)

Proof. The variance of the inner product u ·w is less than its expected square. The reverse

conditional density p∗n(w|ξ) can be expressed as

p∗n(w|ξ) = eh̃
n
ξ (w)−Γnξ (1)p0(w). (2.56)

We then apply a Hölder’s inequality to the integral expression with parameters p and q

such that 1
p
+ 1

q
= 1

VarP ∗
n
(u · w|ξ) ≤ EP0 [(u · w)2eh̃

n
ξ (w)−Γnξ (1)] (2.57)

≤
(
EP0 [(u · w)2p]

) 1
p
(
EP0 [e

qh̃nξ (w)−qΓ
n
ξ (1)]

) 1
q
. (2.58)

Let p = ℓ and q = ℓ
ℓ−1

. The second factor can be written as

e
ℓ−1
ℓ

Γnξ (
ℓ
ℓ−1

)−Γnξ (1). (2.59)

We then study the moments of the prior density and the behavior of the Γnξ (τ) function

separately.

34

Lemma 2.5. For any unit vector u ∈ RnK , with blocks uk ∈ Rn,

EP0 [(
K∑
k=1

uT
kXwk)2ℓ]

1
ℓ ≤ 4ℓn√

e d
. (2.60)

Proof. See Appendix, Section 2.6.3.

Lemma 2.6. Denote the constants

A1 = 2a1 + 4

√
3

2
a2 (2.61)

A2 =
(
2 +

1√
π

)√
2a2

√
3

2
. (2.62)

Assume positive δ ≤ 1
16
, d ≥ 2, K ≥ 2. For any positive integer ℓ ≥ 1 and any ξ from the

constrained set B, we have

ℓ− 1

ℓ
Γnξ (

ℓ

ℓ− 1
)− Γnξ (1) ≤ A1

CnV βn

ℓ
+ A2

√
CnV βn

ℓ

(√
log(

2Kd

δ
)
√
K
)
. (2.63)

Proof. See Appendix, Section 2.6.3.

We summarize the conclusions of Lemmas 4,5,6 as follows. Ignoring certain constant

factors, we have an upper bound on the variance in (2.44) for any choice of ℓ,

nℓ

d
exp

(βn+
√
βnK log(2Kd

δ
)

ℓ

)
. (2.64)

Ignoring for now the integer constraint, the optimal continuous choice of ℓ to minimize the

expression is the numerator in the exponent. With this choice of ℓ, we would have bound

βn2 + n
3
2

√
βKlog(2Kd

δ
)

d
. (2.65)

35

Multiplying this by ρ ∝ β
K

and upper bounding with n ≤ N , we would have the bound

(βN)2

Kd

(
1 +

[K log
(

2Kd
δ

)
βN

] 1
2
)
. (2.66)

If K log(2Kd/δ) ≤ βN , then we have a O((βN)2

Kd
) bound. With a choice of d and K large

enough, we can make this expression be less than 1. We make this statement more precise

in the following theorem.

Theorem 2.3. Assume δ ≤ 1
16
, d ≥ 2, K ≥ 2, βN ≥ 2. Further assume that

K log
(2Kd

δ

)
≤ βN, (2.67)

which is essentially a condition than K not be too large (that is, K is less than some

multiple of βN).

Define A1, A2 as in (2.61), (2.62) and define the constant

A3 = 4

√
3

2e
a2(CNV)

3
2 [A1 + A2(CNV)

1
2]. (2.68)

Let d and K satisfy

Kd ≥ A3(βN)2. (2.69)

Then for all n ≤ N , the marginal density for p∗n(ξ) is log-concave under the continuous

uniform prior. If equation (2.69) is a strict inequality, the density is strictly log-concave.

A relevant δ may be 1/Kd or a power thereof, though a small constant value such as

say 1/300 is also acceptable (to satisfy Corollary 2.1 for example).

Proof. Fix any n ≤ N . By Corollary 2.3, the Hessian of log p∗n(ξ) is log-concave when

36

for any unit vector u, we have

ρVarP ∗
n
[
K∑
k=1

uT
kXwk|ξ] ≤ 1. (2.70)

By Lemma 2.4, 2.5, 2.6 we have an upper bound for this variance for any scalar ℓ > 1 and

ξ ∈ B. Recall A1, A2 as defined in expressions (2.61), (2.62). Fix the choice,

ℓ∗ = A1CnV βn+ A2

√
CnV Kβn log(

2Kd

δ
). (2.71)

This gives upper bound on ρ times the variance,

√
3

2
a2
βCnV

K

4n√
ed
ℓ∗ (2.72)

=4

√
3

2e
A1a2

(CnV βn)
2

Kd
(2.73)

+4

√
3

2e
A2a2

(CnV βn)
3
2

√
K

Kd

√
log(

2Kd

δ
) (2.74)

≤4

√
3

2e
a2

(βN)2

Kd

[
A2(CNV)2 + A1(CNV)

3
2

(K(log(2Kd
δ
)

βN

) 1
2
]
. (2.75)

By assumption,

K log(2Kd
δ
)

βN
≤ 1, (2.76)

so we have upper bound on (2.70),

4

√
3

2e
a2(CNV)

3
2 [A1 + A2(CNV)

1
2]
(βN)2

Kd
. (2.77)

If Kd satisfies condition (2.69), then ρ times the variance is less than 1 in expression

(2.70). By Corollary 2.3, this implies log-concavity of the induced marginal density on

ξ.

37

Remark 2.2. Note under our conditions on K and d in this theorem, K must be less than

some fractional power of N , Np for some power 0 < p < 1. Then d must be more than

N to a power more than 1, d > N q for some power q > 1. For example, K = N1/4, β =

1/N1/4, d > A3N
5/4 would suffice. We need certain control on β,K in our later results to

control the risk.

Remark 2.3. Note that ℓ as used in the proof via the Hölder Inequality must be an integer.

This is since Lemma 2.5 wants to work with whole number moments of the prior. Whereas

the ℓ∗ in equation (2.71) is the optimal continuous value. We would have to round up or

down to the nearest integer. This would result in ℓ∗ ± ϵ for a number |ϵ| < 1 in equation

(2.72) instead of ℓ∗. This would give an additional term βN/(Kd) in the expression (2.77),

yet this is a lower order dependence that (βN)2/(Kd), so it would still be controlled.

Remark 2.4. Note the interior weight dimension d can be made artificially larger by re-

peating the input vectors. Say the original input vectors xi have a default dimension of d̃.

Define new input vectors by repeating the data L times

x̃i = (xi, . . . , xi) ∈ Rd̃L. (2.78)

We can then consider X̃ as our data matrix with row dimension d = Ld̃.

The span of the new data matrix under ℓ1 controlled input vectors, {z = X̃w, ∥w∥1 ≤

1}, is the same as the original matrix. So we have the same approximation ability of

the network. This can also equivalently be considered as inducing some different prior

on the original wk weight vectors of dimension d̃ that is more concentrated than uniform.

However, it is more convenient to consider a uniform prior in a higher d = Ld̃ dimensional

space. This is introducing even more multi-modality into the original density pn(w) as

multiple longer weight vectors yield the same output in the neural network. Yet by our

proceeding theorems we have shown the density can be decomposed into a log-concave

mixture.

38

2.5 Practical Sampling Considerations

The focus of this chapter has been the establishment of the log-concave coupling. That is,

showing that our target density p(w) can be written as a mixture distribution

p(w) =

∫
p(w|ξ)p(ξ)dξ (2.79)

where p(ξ) is a log-concave density, and p(w|ξ) is a log-concave density. We have then

claimed under this structure, it is possible to sample p(ξ) and p(w|ξ) in polynomial time.

There many technical considerations to back this claim of polynomial sampling. While

it is generally true there are many results showing MCMC algorithms mix in polynomial

time for log-concave targets [2, 3, 22, 38, 39, 47, 48], the exact details of which algorithm

to use, the hyper-parameters of that algorithm such as step size or number of iterations, and

the actual coding implementation of these algorithms are beyond the scope of this work.

Nonetheless, we point to several references here that begin in the direction of practically

implementing a sampling algorithm for the log-concave coupling.

2.5.1 Log-Concave Coupling and Existing Methods

The use of an auxiliary random variable to create log-concavity is not a new idea, and

has connections to existing methods. The critical structure of our sampling problem is

that our target distribution of interest can be expressed as a mixture distribution with easy

to sample components. The structure of a mixture distribution has been recognized in a

number of recent papers. For spin glass systems (Sherrington–Kirkpatrick models) of high

temperature, [13] expanded the range of known temperatures under which a Log Sobolev

constant can be established by using such a mixture structure. For a Bayesian regression

problem with a spike and slab (i.e. multi-modal) prior, [51] used the mixture structure to

perform easy MCMC sampling. Thus, it is clear this approach of a mixture distribution can

39

be applied to a number of sampling problems of interest. However, the posterior densities

in these problems were much simpler than ours, making explicit use of the quadratic terms

of their log-likelihoods which simplifies the analysis. Our view of a log-concave coupling

as a mixture distribution applicable to more complex target distributions via a forward

coupling is more general.

Our method of creating the mixture is via forward coupling with a Gaussian auxiliary

random variable ξ whose mean is determined by the target variable w. This has con-

nections to proximal sampling algorithms and score based diffusion models. A proximal

sampling algorithm would sample from the same joint distribution for p(w, ξ) as we de-

fine here. However, the sampling method would be the Gibb’s sampler alternating between

sampling p(w|ξ) and p(ξ|w) which are both log-concave distributions [17, 32, 41, 57]. The

mixing time of this sampling procedure must then be determined. If the original density

of interest satisfies conditions such as being Lipschitz and having a specified Log Sobolev

constant, mixing time bounds can be established for the Gibb’s sampler. It remains un-

clear what the mixing times bounds would be for a more difficult target density such as

the one we study here. We instead explicitly examine the log-concavity of the induced

marginal density p(ξ) and propose to sample ξ from its marginal, followed by a sample

of w|ξ from its conditional. We also note our use of a “cumulant generating function”

(see equation 2.41) to recognize the log concavity of p(ξ) has also been called the “Log-

Laplace Transform” (LLT) in other work [26], which may have connections to our method

of determining the log-concavity of the induced marginal density.

Score based diffusions propose starting with a random variable w′ from the target den-

sity p(w′), and then defining the forward SDE dwt = −wtdt+
√
2dBt. At every time t, this

induces a joint distribution on p(w′, wt) under which the forward conditional distribution

p(wt|w′) is a Gaussian distribution with mean being a linear function of w′. Paired with

this forward SDE is the definition of a reverse SDE that would transport samples from

a standard normal distribution to the target distribution of interest. The drift of the re-

40

verse diffusion is defined by the scores of the marginal distribution of the forward process

∇ log p(wt). If these scores can be computed, the target density can be sampled from.

As is the case in our mixture model, the scores of the marginal are defined by expec-

tations with respect to the reverse conditional p(w′|wt). For some thresholds τ1, τ2, for

small times t ≤ τ1 the reverse conditionals p(w′|wt) are log-concave and easily sampled.

For large times t ≥ τ2, the marginal density p(wt) is approaching a standard normal dis-

tribution and thus will become log-concave. If τ2 < τ1, these two regions overlap and

the original density p(w′) can be written as a log-concave mixture of log-concave com-

ponents p(w′) =
∫
p(w′|wt)p(wt)dwt. Thus, the entire procedure of reverse diffusion can

be avoided and a one shot sample of wt from its marginal p(wt) and a sample from the

reverse conditional p(w′|wt) can computed. A variation of this idea is the core procedure

we use in this work, simplifying the processes of a reverse diffusion into one specific and

useful choice of joint measure with an auxiliary random variable.

2.5.2 Bayesian Neural Networks

Bayesian neural networks have been studied for many years [16, 25, 52], although specific

mixing time bounds for MCMC algorithms to guarantee polynomial time complexity have

been a barrier to their implementation. Recent approaches have studied the simplification

of the posterior in the Neural Tangent Kernel (NTK) regime, resulting in the posterior be-

ing near the posterior associated with a Gaussian process prior [28, 30]. These approaches

require K/N → ∞ to achieve that simplification of the posterior density. We work with

K < N which is a different regime. The bounded K/N setting is shown in [28, 30] to

be distinct with potentially more flexible non-Gaussian process behavior. Indeed, such

flexibility arises in our model where the internal weights are adapted by the posterior.

41

2.5.3 Sampling the Reverse Conditional Density

The density p(w|ξ) represents a weakly log-concave density over a constrained set. Note

that our target density p(w|ξ) only depends on the random variables w through their inter-

action with the data matrix X. Thus, directions w that are orthogonal to the data matrix,

that is w where wk · xi = 0 for all i and k, have no interaction with the Hessian matrix of

the log-likelihood. As such, the density is flat along these directions (the log-likelihood is

constant for all w,w′ with xi ·wk = xi ·w′
k for all i, k) and thus the Hessian is not negative

definite but only negative semi-definite. This means p(w|ξ) is not strongly log-concave,

but only weakly log-concave.

There are various methods adapting unconstrained sampling algorithms to constrained

spaces such as using a barrier function [56], Dikin Walks [38] and Hamiltonian Monte

Carlo in a constrained space [37]. However, these may not work as well with a weakly

log-concave density as we have here.

There are existing algorithms which show success for sampling weakly log-concave

density on constrained spaces. It is shown in [48] that Ball Walk and Hit and Run algo-

rithms mix in polynomial time for weakly log-concave densities on a convex set. Recent

results in [39] improve upon these mixing time bounds, using a method of sampling from

uniform densities over convex level sets of the log-likelihood. We also note, with differ-

ent construction of the auxiliary random variable ξ then the one we have proposed in this

work, it may be possible to force strict concavity in every direction of log p(w|ξ) using a

normal with a different mean and covariance matrix for the forward coupling. This may

have benefits for the speed of sampling.

2.5.4 Sampling the Induced Marginal Density

With d larger than the bound given in equation 2.69, we can show p(ξ) to be a strongly

log-concave density, which makes studying its mixing time bounds easier. However, due

42

to our set B restriction the ξ random variable is also forced to live in a constrained convex

support set. Thus we cannot directly apply unconstrained sampling algorithms over the

full state space without considering the effects of the boundary. However, we constructed

our set B to be very likely under an un-constrained density for p(ξ), so it is very unlikely

for p(ξ) to be drawn near to its boundary.

Furthermore, we do not have access directly to the log-likelihood of p(ξ), but can

only express it as implicitly as a convolution. However, we can write the score ∇ log p(ξ)

explicitly as a expectation over the reverse conditional density p(w|ξ). Thus, with the

ability to sample p(w|ξ), the score of p(ξ) can be estimated empirically by its own MCMC

algorithm as needed. Denote the function

h(w) = −βℓn(w)−
ρ

2

n∑
i=1

K∑
k=1

(wk · xi)2 − Z(w), (2.80)

which is the part of the log-likelihood of the joint density which does not depend on ξ.

The marginal pdf can then be expressed as

log pn(ξ) = −ρ
2
∥ξ∥22 + log

(∫
p0(w)e

h(w)eρ
∑n
i=1

∑K
k=1 ξi,kwk·xiη(dw)

)
+ C, (2.81)

for some constant C which makes the density integrate to 1. Note that ξ is restricted to

have support only on the set B, so there is an indicator of the set B we do not write in the

expression for simplicity.

Ignoring the restriction to the boundary set B, there are a few possible ways we could

got about sampling p(ξ).

Firstly, we could simply use un-adjusted Langevin diffusion (ULA), which is a basic

discretization of the continuous time Langevin diffusion and only needs access to the score

of our target density. However, ULA is known to be biased for its target density dependent

on the step size used, and does not mix as fast as other better Langevin based algorithms

43

[22].

We could instead use Metropolis adjusted Langevin diffusion (MALA) which includes

an accept/ reject step in the iterations. This is unbiased for the target density in question,

and has improved speed up over ULA [22]. However, the Metropolis accept-reject step

requires computing ratios of the probabilities p(ξ′)/p(ξ) for various proposed ξ′ points.

Yet we do not have access to the p(ξ) density per-say. However, assuming ξ′ is near ξ we

can estimate log p(ξ′)− log p(ξ) in one of two possible ways

log p(ξ′)− log p(ξ) = −ρ
2
∥ξ′∥22 + log

(∫
p0(w)e

h(w)eρ
∑n
i=1

∑K
k=1 ξ

′
i,kwk·xiη(dw)

)
(2.82)

+
ρ

2
∥ξ∥22 − log

(∫
p0(w)e

h(w)eρ
∑n
i=1

∑K
k=1 ξi,kwk·xiη(dw)

)
(2.83)

= −ρ
2
(∥ξ′∥22 − ∥ξ∥22) + logE[eρ

∑n
i=1

∑K
k=1(ξ

′
i,k−ξi,k)wk·xi |ξ]. (2.84)

With empirical samples from p(w|ξ) we can estimate this expectation and approximate the

acceptance probability of a metropolis correction step. One should be wary of sample av-

erages of exponential of sums of nK terms, as they could have large variance. Fortunately

if the size ∆ of the proposed differences ξ′ − ξ are arranged to be sufficiently small that

ρnK∆ is bounded, then such sampling will be accurate. We may also approximate

log p(ξ′)− log p(ξ) ≈ (∇ log p(ξ)) · (ξ′ − ξ) (2.85)

and the score may be computed. Thus, with access to the ability to sample from the

conditional density p(w|ξ) it may be possible to approximate acceptance probabilities and

make use of Metropolis adjusted sampling algorithms that are more accurate for the target

density and can show speed up in the number of iterations required.

44

2.6 Appendix: Proofs of Additional Lemmas

Here we present proofs of lemmas that were too long or tedious to present in the main

body of the chapter.

2.6.1 Proofs for Near Constancy of Z(w)

In this section, we show the restriction of ξ to the set B is a highly likely event under the

base Gaussian distribution, and Z(w) has small magnitude first and second derivatives.

Proof of Lemma 2.1:

Proof. We show that the set B is likely for conditionally independent Gaussian distribu-

tions for each variable. This proof follows from standard Gaussian complexity arguments.

The object we must bound is P (ξ ∈ B|w). If the ξi,k given w are independent

Normal(xi · wk, 1/ρ) we may arrange a representation using independent standard nor-

mals Zk of dimension n,

ξk = Xwk +
1
√
ρ
Zk. (2.86)

Each mean xi · wk is in [−1, 1] due to the weight vector having bounded ℓ1 norm and

the data entries having bounded value. Consider the complement of the event we want to

study, we wish for this event to have probability less than δ.

P (max
j,k

|
n∑
i=1

xi,jξi,k| ≥ n+

√
2 log

2Kd

δ

√
n

ρ
), (2.87)

where P is the probability using the normal distribution of ξ given w. The max is upper

45

bound by

max
j,k

|
n∑
i=1

xi,jξi,k| ≤ n+max
j,k

| 1
√
ρ

n∑
i=1

xi,jZi,k|. (2.88)

Thus we can bound the larger probability event uniformly for w ∈ (Sd1)
K ,

P (max
j,k

|
∑n

i=1 xi,jZi,k|√
n

≥
√

2 log
2Kd

δ
) ≤ δ√

2 log(2Kd/δ)
. (2.89)

Where the conclusion follows from a union bound and Gaussian tail bound.

Proof of Lemma 2.2:

Proof. We provide upper bounds on the magnitude of the first and second derivatives of

the function Z(w) as defined in equation (2.20). Denote Φ as the normal CDF and φ as the

normal pdf. Throughout the proof recall that p(w|ξ) treats each ξi,k as independent normal

with ξi,k ∼ Normal(xi · wk, 1ρ) conditionally independent given w. The gradient of Z(w)

inner product with a vector u with blocks uk is

∣∣u · ∇wZ(w)
∣∣ = ∣∣∣ρE[n∑

i=1

K∑
k=1

(uk · xi)(ξi,k − xi · wk)
1B(ξ)

P (ξ ∈ B|w)
|w]

∣∣∣. (2.90)

By Lemma 2.1, the set B has probability at least 1 − δ/
√

2 log(2Kd/δ). We note the

following upper and lower bounds on the Gaussian CDF provided by the classical results

of Gordon [27], we have bounds on the Gaussian CDF

φ(x)

x+ 1
x

≤ 1− Φ(x) ≤ φ(x)

x
. (2.91)

46

Consider then the value

δ∗ = Φ(−
√
2 log(1/δ)). (2.92)

For our problem, Kd ≥ 2 by construction. Then for all positive δ ≤ 1/e, it can be shown

that δ∗ is larger than the term which defines the probability of our set B,

δ√
2 log(2Kd/δ)

≤ δ∗. (2.93)

Then consider the collections of all measurable sets D ⊂ RNK such that P (ξ ∈ D) ≥

1 − δ∗. This collection contains our original set B as an object in the class. Then, the

absolute value of the expected inner product in (2.90) is less than the maximum for any

set D in this class,

max
D:

P (ξ∈D|w)≥1−δ

ρ
|E[

∑n
i=1

∑K
k=1(uk · xi)(ξi,k − xi · wk)1D(ξ)|w]|

1− δ
. (2.94)

Define the value

σ̃ =

√∑n
i=1

∑K
k=1(uk · xi)2
ρ

. (2.95)

Under the normal distribution for ξ, the integrand in question is a scalar mean 0 normal

random variable with this variance,

n∑
i=1

K∑
k=1

(uk · xi)(ξi,k − xi · wk) ∼ Normal(0, σ̃2). (2.96)

47

The set D which maximizes expression (2.94) is then the set which controls the size of

this integrand,

D∗ = {ξ :
∑n

i=1

∑K
k=1(uk · xi)(ξi,k − xi · wk)

σ̃
≤ τ}, (2.97)

for some choice of τ . We can also equally consider the set D∗ where the object in the

expression being more than some negative τ , due to symmetry. The proper choice of τ is√
2 log(1/δ).We then have upper bound

|u · ∇wZ(w)| ≤
ρσ̃

1− δ

∣∣∣ ∫ √
2 log(1/δ)

−∞
zφ(z)dz

∣∣∣ = ρσ̃δ√
2π1− δ

, (2.98)

using the fact that −zφ(z) = φ′(z) and fundamental theorem of calculus. This yields an

upper bound on our expression of interest,

|u · ∇wZ(w)| ≤
ρσ̃

1− δ

δ√
2π
. (2.99)

Which notably goes to 0 as δ → 0.

The Hessian is then a difference in variances,

uT[∇2Z(w)]u =− ρ

n∑
i=1

K∑
k=1

(xi · uk)2 (2.100)

+ ρ2Var[
n∑
i=1

K∑
k=1

(xi · uk)ξi,k|w,B]. (2.101)

Note that ξi,k is independent normal with variance 1/ρ, so if we did not constrain the set

B, expressions (2.100) and (2.101) would cancel to 0. That is, (2.100) is the variance of

the linear function of ξ given w if we did not condition on the set B, and (2.101) is the

variance conditioned on the set B.

Note that the object whose variance we are taking in (2.101) is a linear function of

48

ξ, and ξ is a normal random variable given w with diagonal covariance matrix 1
ρ
. By

an application of a Brascamp-Lieb inequality, see for example [14, Proposition 2.1], we

would have an upper bound on this variance by the norm of this linear vector divided by ρ,

which times ρ2 is exactly expression (2.100). Thus, the term (2.101) is less than or equal

to the absolute value of term (2.100) so an upper bound on the quadratic form is 0, that is

uT[∇2Z(w)]u ≤ 0.

We then compute a lower bound on the variance term in (2.101). Note a Cramer-Rao

lower bound is not applicable here since restriction to a compact set makes integration by

parts inapplicable due to boundary conditions. In particular, the expectation of the score

of a constrained distribution is not always 0.

Using a bias-variance decomposition, we can write the variance as a non-centered

expected squared difference minus a bias correction,

Var[
n∑
i=1

K∑
k=1

(xi · uk)ξi,k|w,B] (2.102)

= E[
(n∑
i=1

K∑
k=1

(xi · uk)(ξi,k − xi · wk)
)2

|w, ξ ∈ B] (2.103)

−
(n∑
i=1

K∑
k=1

(uk · xi)
(
E[ξi,k|w, ξ ∈ B]− xi · wk

))2

(2.104)

≥ E[
(n∑
i=1

K∑
k=1

(xi · uk)(ξi,k − xi · wk)
)2 1B(ξ)

P (ξ ∈ B|w)
|w] (2.105)

− ρ2σ̃2

(1− δ)2
δ2

2π
, (2.106)

where we have applied the previously derived bound on the score to expression (2.104) to

deduce expression (2.106), which is the square of the previous bond.

If we did not condition on the set B, the expression (2.105) would be the variance of

a simple normal variable with variance σ̃2. We will show restricting to B still results in a

value very close to σ̃2.

49

The set B has probability at least 1− δ/
√

2 log(2Kd/δ). Define the value

δ∗∗ = 2Φ(−
√
2 log(1/δ)). (2.107)

If Kd ≥ 4, for all positive δ ≤ 1/16 we have that δ∗∗ is larger than the term which defines

the set B probability,

δ√
2 log(2Kd/δ)

≤ δ∗∗. (2.108)

Then, the expected value of the variable in question restricted to B is lower bound by the

minimum for any set D with P (ξ ∈ D) ≥ 1− δ∗∗,

E[
(n∑
i=1

K∑
k=1

(xi · uk)(ξi,k − xi · wk)
)2 1B(ξ)

P (ξ ∈ B|w)
|w] (2.109)

≥ min
D:

P (ξ∈D|w)≥1−δ∗∗

E[
(∑n

i=1

∑K
k=1(xi · uk)(ξi,k − xi · wk)

)2

1D(ξ)|w]

1− δ
. (2.110)

The integrand in question, as before, is the same normal variable now squared. The mini-

mizing set D∗ is then the set placing an upper bound on that expression,

D∗ = {ξ : −τ ≤
∑n

i=1

∑K
k=1(xi · uk)(ξi,k − xi · wk)

σ̃
≤ τ}, (2.111)

for some value τ , the proper choice being τ =
√

2 log(1/δ).

Note this set D∗ can be deduced from the Neyman-Pearson Lemma [43, Theorem

3.2.1], comparing the distribution where each ξi,k is independent normal with mean xi ·wk

and variance 1
ρ
, to the distribution which has this normal density times (

∑n
i=1

∑K
k=1(xi ·

uk)(ξi,k−xi ·wk))2. (Likewise, the previous D∗ in (2.97) can be deduced by a generaliza-

tion of the Neyman-Pearson lemma in which the alternative is a signed measure measure

with the normal density times the factor
∑n

i=1

∑K
k=1(xi · uk)(ξi,k − xi · wk)).

50

We are then integrating a squared normal on a truncated range and have lower bound,

min
D:

P (ξ∈D|w)≥1−δ

E[
(∑n

i=1

∑K
k=1(xi · uk)(ξi,k − xi · wk)

)2

1D(ξ)|w]

1− δ
(2.112)

=
σ̃2

1− δ

∫ √
2 log(1/δ)

−
√

2 log(1/δ)

z2φ(z)dz. (2.113)

To evaluate this integral use its complement set and symmetry of the normal pdf,

∫ √
2 log(1/δ)

−
√

2 log(1/δ)

z2φ(z)dz = 1− 2

∫ −
√

2 log(1/δ)

−∞
z2φ(z)dz. (2.114)

Then apply integration by parts,

−
∫ −

√
2 log(1/δ)

−∞
z2φ(z)dz = zφ(z)|−

√
2 log(1/δ)

−∞ − Φ(−
√

2 log(1/δ)). (2.115)

This gives a lower bound for the expression in (2.113)

σ̃2

1− δ

(
1− 2δ√

2π
(
√
2 log(1/δ) +

1√
2 log(1/δ)

)
)
, (2.116)

which converges to σ̃2 as δ → 0. We then combine expressions (2.101), (2.106), and

(2.116) to give a lower bound on Hessian quadratic form,

uT[∇2Z(w)]u ≥ −ρ2σ̃2 + ρ2σ̃2(
1

1− δ
− 2δ

(1− δ)
√
2π

(
√
2 log(1/δ) +

1√
2 log(1/δ)

))

(2.117)

− ρ4σ̃2

(1− δ)2
δ2

2π
(2.118)

= −ρ
2σ̃2

√
2π

δ

1− δ

(
−

√
2π + 2

√
2 log(1/δ)(1 +

1

2 log(1/δ)
) +

ρ2σ̃2

√
2π

δ

1− δ

)
(2.119)

≥ −ρ
2σ̃2

√
2π

δ

1− δ

(
2
√

2 log(1/δ) +
ρ2σ̃2

√
2π

δ

1− δ

)
(2.120)

51

which converges to 0 as δ → 0.

2.6.2 Log-Concavity of p∗n(w|ξ) with Conditioning on the Set B

In this section, we show the conditioning of ξ given w to the set B does not affect the

log-concavity of the reverse conditional much.

Proof of Theorem 2.2:

Proof. We prove the reverse conditional is log-concave when restricting ξ to live in the set

B. This proof follows much the same way as Theorem 2.1. The log-likelihood for p∗n(w|ξ)

is given by

log p∗n(w|ξ) =− βℓn(w) +H(ξ) (2.121)

−
n∑
i=1

K∑
k=1

ρ

2
(ξi,k − wk · xi)2 (2.122)

− Z(w), (2.123)

for some function H(ξ) which does not depend on w and is only required to make the

density integrate to 1. The term (2.122) is a negative quadratic in w which treats each

wk as if it were an independent normal random variable. Thus, the additional Hessian

contribution will be a (Kd) × (Kd) negative definite block diagonal matrix with d ×

d blocks of the form ρ
∑n

i=1 xix
T
i . Denote the Hessian as Hn(w|ξ) ≡ ∇2 log p∗n(w|ξ).

For any vector u ∈ RKd, with blocks uk ∈ Rd, the quadratic form uTHn(w|ξ)u can be

52

expressed as

− β
n∑
i=1

(K∑
k=1

ψ′(wk · xi)uk · xi
)2

(2.124)

+
K∑
k=1

n∑
i=1

(uk · xi)2
[
βresi(w)ckψ′′(wk · xi)− ρ)

]
(2.125)

+ uT(∇2Z(w))u. (2.126)

By the assumptions on the second derivative of ψ and the definition of ρ in equation (2.16)

we have

max
i,k

(βresi(w)ckψ′′(wk · xi)− ρ) ≤ −(

√
3

2
− 1)a2

βCnV

K
, (2.127)

so all the terms in the sum in (2.125) are negative. Recall the definition of σ̃2,

σ̃2 =

∑K
k=1

∑n
i=1(uk · xi)2

ρ
. (2.128)

Therefore, expression (2.125) is less than

−(

√
3

2
− 1)

√
3

2

(
a2
βCnV

K

)2

σ̃2. (2.129)

By Lemma 2.2, the largest the Hessian term from the correction function Z can be is

uT(∇2Z(w))u ≤ ρ2σ̃2

√
2π

δ

1− δ

(
2
√
2 log(1/δ) +

ρ2σ̃2

√
2π

δ

1− δ

)
. (2.130)

53

Thus term (2.125) plus (2.126) is less than

− σ̃2
(
a2
βCnV

K

)2(√3

2
− 1

)(√3

2

)
(2.131)

+σ̃2
(
a2
βCnV

K

)2(√3

2

)2 2√
2π

δ

1− δ

√
2 log

δ

2
(2.132)

+σ̃2
(
a2
βCnV

K

)4(√3

2

)4 1

2π

δ2

(1− δ)2
. (2.133)

Recall the definitions of H1 and H2 in the theorem statement,

H1(δ) =
2√
2π

δ

1− δ

√
2 log

δ

2
(2.134)

H2(δ) =
(
a2
βCnV

K

)2 1

2π

δ2

(1− δ)2
. (2.135)

Simplifying expressions (2.131) to (2.133) by dividing out common terms, to have a neg-

ative expression for the Hessian we require yields,

√
3

2
(−1 +H1(δ)) +

(√3

2

)3

H2(δ) ≤ −1. (2.136)

By the assumptions H1(δ) ≤ 1
100

, and H2(δ) ≤ 1
10

. Under these conditions, the inequality

is satisfied

√
3

2
(−1 +H1(δ)) +

(√3

2

)3

H2(δ) ≤
√

3

2
(− 99

100
) +

(√3

2

)3 1

10
(2.137)

= −21

25

√
3

2
< −1. (2.138)

54

2.6.3 Hölder Inequality Proofs

In this section, we bound the two terms in the Hölder inequality. First, we need a support-

ing lemma.

Lemma 2.7. For any vector x ∈ [−1, 1]d and any integer ℓ > 0, the expected inner product

with random vector w from the continuous uniform distribution on Sd1 raised to the power

2ℓ is upper bound by,

EP0 [(
d∑
j=1

xjwj)
2ℓ] ≤ 1

(d)ℓ
(2ℓ)!

ℓ!
. (2.139)

Proof. The sum
∑d

j=1 xjwj raised to the power 2ℓ can be expressed as sum using a multi-

index J = (j1, . . . , j2ℓ) where each ji ∈ {1, . . . , d} and there are d2ℓ terms,

E[
(d∑
j=1

xjwj

)2ℓ

] =
∑

j1,...,j2ℓ

2ℓ∏
i=1

(xji)E[
2ℓ∏
i=1

wji]. (2.140)

For a given multi-index vector J , let r(j, J) count the number of occurrences of the value

j in the vector, r(j, J) =
∑2ℓ

i=1 1{ji = j}. Then for any multi-index we would have,

2ℓ∏
i=1

wji =
d∏
j=1

w
r(j,J)
j . (2.141)

Abbreviate rj = r(j, J) for a fixed vector J also note
∑d

j=1 rj = 2ℓ. Consider the ex-

pectation E[
∏d

i=1w
rj
j]. Due to the symmetry of the prior, if any of the rj are odd then

the whole expectation is 0. Thus, we only consider vectors r⃗ = (r1, . . . , rd) where all

entries are even. If we fix the signs of the wj points to live in a given orthant, then the

distribution is uniform on the d + 1 dimensional simplex. Define wd+1 = 1 −
∑d

j=1 |wj|

then (|w1|, . . . , |wd|, wd+1) has a symmetric Dirichlet (1, . . . , 1) distribution in d + 1 di-

mensions. Note a general Dirichlet distribution in d+1 dimensions with parameter vector

55

α⃗ = (α1, . . . , αd+1) has a properly normalized density as

pα⃗(w1, . . . , wd) =
Γ(
∑d

j=1 αj)∏d+1
j=1 Γ(αj)

d∏
j=1

(wj)
αj−1(1−

d∑
j=1

wj)
αd+1−1. (2.142)

Thus the expectation of
∏d

j=1w
rj
j with respect to a symmetric Dirichlet has the form of an

un-normalized Dir(r1 + 1, . . . , rd + 1, 1) distribution. Thus, the expectation is a ratio of

their normalizing constants,

E[
d∏
j=1

w
rj
j] =

Γ(d+ 1)
∏d

j=1 Γ(rj + 1)

Γ(d+ 1 +
∑d

j=1 rj)
(2.143)

=
d!
∏d

j=1 rj!

(d+ 2ℓ)!
. (2.144)

The number of times a specific vector r⃗ appears from the multi-index J is (2ℓ)!∏d
j=1 rj !

thus we

have,

E[(
d∑
j=1

xjwj)
2ℓ] =

∑
r⃗ even∑
j rj=2ℓ

d∏
j=1

(xj)
rj

(2ℓ)!∏d
j=1 rj!

E[
d∏
j=1

w
rj
j] (2.145)

=
(2ℓ!)(d!)

(d+ 2ℓ)!

∑
r⃗ even∑
j rj=2ℓ

d∏
j=1

(xj)
rj (2.146)

=
(2ℓ!)(d!)

(d+ 2ℓ)!

∑
r⃗ even∑
j rj=2ℓ

d∏
j=1

(x2j)
rj
2 (2.147)

≤ (2ℓ!)(d!)

(d+ 2ℓ)!

(d+ ℓ− 1)!

ℓ!(d− 1)!
(2.148)

=
(d+ ℓ− 1) · · · (d)
(d+ 2ℓ) · · · (d+ 1)

(2ℓ)!

(ℓ)!
(2.149)

≤ 1

dℓ
2ℓ!

ℓ!
, (2.150)

where inequality (2.148) follows from each x2j ≤ 1 thus each term in the sum is less than

56

1 and there being
(
d+ℓ−1
ℓ

)
terms in the sum.

Proof of Lemma 2.5:

Proof. We bound the first term in the Hölder inequality depending on the higher order

moments of the prior. We have unit vector u ∈ RnK with n dimensional blocks uk. Define

vectors in Rd as vk = XTuk and the object we study is

E[(
K∑
k=1

vk · wk)2ℓ]. (2.151)

Use a multinomial expansion of this power of a sum and we have expression,

E[
∑

j1,...,jK∑
jk=2ℓ

(
2ℓ

j1, . . . , jK

) K∏
k=1

(vk · wk)jk] =
∑

j1,...,jK∑
jk=2ℓ

(
2ℓ

j1, . . . , jK

) K∏
k=1

E[(vk · wk)jk],

(2.152)

since the prior treats each neuron weigh vector wk as independent and uniform on Sd1 . By

the symmetry of the prior, if any jk are odd the whole expression is 0 thus we only sum

using even jk values,

∑
j1,...,jK∑
jk=ℓ

(
2ℓ

2j1, . . . , 2jK

) K∏
k=1

E[(vk · wk)2jk]. (2.153)

Each vector vk is a linear combination of the rows of the data matrix,

vk =
n∑
i=1

uk,ixi. (2.154)

57

Define sk,i = sign(uk,i) and αk,i =
|uk,i|
∥uk∥1

. We can then interpret the above inner product

as a scaled expectation on the data indexes,

vk · wk = (∥uk∥1)
n∑
i=1

αk,isk,i xi · wk. (2.155)

The average is then less than the maximum term in index i,

E[(vk · wk)2jk] = (∥uk∥1)2jkE[
(n∑
i=1

αk,isk,i xi · wk
)2jk

] (2.156)

≤ (∥uk∥1)2jk
n∑
i=1

αk,iE[
(
xi · wk

)2jk
] (2.157)

≤ (∥uk∥1)2jk max
i
E[(xi · wk)2jk] (2.158)

≤ (∥uk∥1)2jk
1

(d)jk
(2jk)!

jk!
, (2.159)

where we have applied Lemma 2.7. We then plug this result into equation (2.153),

1

dℓ
(2ℓ!)

ℓ!

(∑
j1,...,jK∑
jk=ℓ

(
ℓ

j1, . . . , jK

) K∏
k=1

(∥uk∥1)2jk
)
=

1

dℓ
(2ℓ)!

ℓ!

(K∑
k=1

∥uk∥21
)ℓ
. (2.160)

For each sub block uk of dimension nwe have ∥uk∥21 ≤ n∥uk∥22 and ∥u∥2 =
∑K

k=1 ∥uk∥2 =

1 is a unit vector which gives upper bound

nℓ(2ℓ)!

dℓℓ!
. (2.161)

Via Stirling’s bound [55],

√
2πℓ(

ℓ

e
)ℓe

1
12ℓ+1 ≤ ℓ! ≤

√
2πℓ(

ℓ

e
)ℓe

1
12ℓ . (2.162)

58

Taking the ℓ root we have

(nℓ
dℓ

(2ℓ)!

ℓ!

) 1
ℓ ≤ n

d

(
22ℓ+

1
2 (
ℓ

e
)ℓe

1
24ℓ

− 1
12ℓ+1

) 1
ℓ

(2.163)

=
22+

1
2ℓnℓ

d
e

1
24ℓ2

− 1
12ℓ2+ℓ

−1 (2.164)

≤ 4nℓ

d

√
2e

1
24

+ 1
13

−1 (2.165)

≤ 4nℓ√
ed
. (2.166)

of Lemma 2.6:

Proof. We bound the second term in the Hölder inequality determined by the growth rate

of the cumulant generating function. By the mean value theorem, there exists some value

τ̃ ∈ [1, ℓ
ℓ−1

] such that

Γnξ (
ℓ

ℓ− 1
) = Γnξ (1) + (Γnξ)

′(τ̃)[
ℓ

ℓ− 1
− 1]. (2.167)

Rearranging, we can express the difference

ℓ− 1

ℓ
Γnξ (

ℓ

ℓ− 1
)− Γnξ (1) = (Γnξ)

′(τ̃)
1

ℓ
− 1

ℓ
Γnξ (1). (2.168)

By construction, Γnξ (τ) is an increasing convex function with Γnξ (0) = 0. Thus Γnξ (1) > 0

and we can study the upper bound

ℓ− 1

ℓ
Γnξ (

ℓ

ℓ− 1
)− Γnξ (1) ≤ (Γnξ)

′(τ̃)
1

ℓ
. (2.169)

Recall Γnξ (τ) defined in equation (2.54) is a cumulant generating function of h̃nξ (w). Thus,

its derivative at τ̃ is the mean of h̃nξ (w) under the tilted distribution. The mean is then less

59

than the maximum difference of any two points on the constrained support set,

(Γnξ)
′(τ̃) = Eτ̃ [h̃

n
ξ (w)|ξ] ≤ max

w,w0∈(Sd1)K
(h̃nξ (w)− h̃nξ (w0)). (2.170)

By the mean value theorem, for any choice of w,w0 ∈ (Sd1)
K there exists a w̃ ∈ (Sd1)

K

along the line between w and w0 such that

h̃nξ (w)− h̃nξ (w0) = ∇wh̃
n
ξ (w̃) · (w − w0). (2.171)

For each k, the gradient in wk is

∇wk h̃
n
ξ (w̃) = β

n∑
i=1

(resi(w̃)ckψ′(wk · xi)− a2

√
3

2

CnV

K
[wk · xi])xi (2.172)

+ a2

√
3

2

βCnV

K

n∑
i=1

ξi,kxi +∇wkZ(w). (2.173)

The terms in the sum in (2.172) satisfy

|resi(w̃)ckψ′(wk · xi)− a2

√
3

2

CnV

K
[wk · xi]| ≤ (a1 + a2

√
3

2
)
CnV

K
, (2.174)

for each i. The vector wk − w0,k satisfies ∥wk − w0,k∥1 ≤ 2. Since each xi vector has

bounded entries between -1 and 1, the inner product with the first term is bounded as

[
β

n∑
i=1

(resi(w̃)ckψ′(wk · xi)−
CnV

K
)xi

]
· (wk − w0,k) ≤ 2

(
a1 + a2

√
3

2

)CnV βn
K

.

(2.175)

As for the second term,

[n∑
i=1

ξi,kxi

]
· (wk − w0,k) ≤ 2max

j
|

n∑
i=1

ξi,kxi,j|. (2.176)

60

Our original restriction of ξ to the set B is specifically designed to control this term. By

definition of the set B, for all k,

max
j

|
n∑
i=1

ξi,kxi,j| ≤ n+

√
2 log(

2Kd

δ
)

√
n

ρ
(2.177)

= n+

√
2 log

2Kd

δ

√√
2

3

nK

a2βCnV
. (2.178)

For the final term, Z(w) is shown to have small derivative. By Lemma 2.2,

∑
k

∇wkZ(w) · (wk − w0,k) ≤
√
ρ

√√√√ n∑
i=1

K∑
k=1

((wk − w0,k) · xi)2
1

(1− δ)

δ√
2π

(2.179)

≤

√
4a2

√
3

2
CnV βn

δ√
2π

1

1− δ
. (2.180)

Summing using index k for terms (2.175), (2.178) and combining with term (2.180), we

can upper bound the difference in the CGF as,

2
(
a1 + a2

√
3

2

)CnV βn
ℓ

+ 2a2

√
3

2

βCnV

ℓ

(
n+

√
2 log

2Kd

δ

√√
2

3

nK

a2βCnV

)
(2.181)

+2

√
a2

√
3

2
CnV βn

δ√
2π

1

1− δ
(2.182)

=
CnV βn

ℓ
(2a1 + 4a2

√
3

2
) +

√
CnV βn

ℓ

√
a2

√
3

2

(
2

√
2 log

2Kd

δ

√
K +

√
2

δ√
π(1− δ)

)
.

(2.183)

By assumption d ≥ 2, K ≥ 2, δ ≤ 1
16

. For all values 0 < z ≤ 1
2

we have the inequality

z

(1− z)
≤

√
log

2

z
≤

√
log

2Kd

z

√
K. (2.184)

61

This gives the final upper bound

CnV βn

ℓ
(2a1 + 4a2

√
3

2
) +

√
CnV βn

ℓ
(2 +

1√
π
)

√
2a2

√
3

2

(√
log

2Kd

δ

√
K
)
. (2.185)

62

Chapter 3

Statistical Risk for Joint Sampling

3.1 Introductory Concepts in Risk Control

For risk control, we want to compare the performance of our Bayesian posterior to the best

possible approximation in the model class. Note our previous sampling results are for the

continuous uniform prior on (Sd1)
K . When bounding posterior risk, we will work with the

discrete uniform prior on (Sd1,M)K . In Chapter 6, we discuss possible ways to extend the

risk results we prove here for the discrete prior to the continuous prior, but this remains

future work.

Consider (xi, yi)Ni=1 as an arbitrary sequence of inputs and response values. Let pn(w|xn, yn)

be the posterior density trained on data up to index n with gain β. Recall the definitions of

posterior mean and predictive density

µn(x) = EPn [f(x,w)|xn, yn] (3.1)

pn(y|x, xn, yn) = EPn [

√
β√
2π
e−

β
2
(y−f(x,w))2|xn, yn]. (3.2)

Let g be a competitor function we want to compare our performance to. Define its pre-

dictive density q(y|x) as Normal(g(x), 1
β
). The individual squared error regret is defined

63

as

rsquare
n =

1

2

[
(yn − µn−1(xn))

2 − (yn − g(xn))
2
]
. (3.3)

We also define the randomized regret and log regret as

rrand
n =

1

2

[
EPn−1 [(yn − f(xn, w))

2]− (yn − g(xn))
2
]

(3.4)

rlog
n =

1

β

[
log

1

pn−1(yn|xn, xn−1, yn−1)
− log

1

q(yn|xn)

]
. (3.5)

We then have the following ordering of the regrets [12].

Lemma 3.1. Assume fw, g are bounded in absolute value by bf , bg. Define

ϵn = yn − g(xn) b =
bf + bg

2
λn = b|ϵn|+ b2. (3.6)

Then we have

rlog
n ≤ rrand

n (3.7)

rsquare
n ≤ rrand

n ≤ rlog
n + 2βλ2n. (3.8)

Proof. rsquare
n ≤ rrand

n and rlog
n ≤ rrand

n by Jensen’s inequality. Consider

1

2
[(yn − f(xn, w))

2 − (yn − g(xn))
2], (3.9)

as a random variable inw. Then rrand
n is its expected value and rlog

n is − 1
β

times its cumulant

64

generating function at −β. Note that by a difference in squares identity,

1

2
[(yn − f(xn, w))

2 − (yn − g(xn))
2] = (g(xn)− f(xn, w))(ϵn +

g(xn)− f(xn, w)

2
)

(3.10)

≤ 2b(|ϵn|+ b) (3.11)

= 2λn. (3.12)

By second order Taylor expansion, the cumulant generating function of a bounded random

variable matches the mean to within half the range squared. Thus, we have

rrand
n ≤ rlog

n + 2βλ2n. (3.13)

Define the averaged quantities as

Rsquare
N =

1

N

N∑
n=1

rsquare
n Rrand

N =
1

N

N∑
n=1

rrand
n (3.14)

Rlog
N =

1

N

N∑
n=1

rlog
n Λ2

N =
1

N

N∑
n=1

λ2n. (3.15)

The average regrets follow the same ordering as the pointwise components,

Rsquare
N ≤ Rrand

N ≤ Rlog
N + 2βΛ2

N . (3.16)

The easiest of the regrets to bound is the log regret as it has a telescoping cancellation of

log terms.

65

Lemma 3.2. The average log regret is upper bound as

Rlog
N ≤ − 1

βN
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2]− 1

2

1

N

N∑
n=1

(yn − g(xn))
2. (3.17)

Proof. Denote the Bayes factor as

Zn = EP0 [
e−

β
2

∑n
i=1(yi−f(xi,w))2

(2π/β)
n
2

]. (3.18)

The predictive density for pn−1 is then the ratio of Zn to Zn−1,

pn−1(yn|xn, xn−1, yn−1) =
Zn
Zn−1

. (3.19)

Note this result requires reciprocal variance in our predictive density to match the β gain

used in the definition of our Bayesian model. The sum of logs then becomes a telescoping

product of canceling terms.

− 1

N

N∑
n=1

log pn−1(yn|xn, xn−1, yn−1) (3.20)

=− 1

N
log

N∏
n=1

Zn
Zn−1

(3.21)

=− 1

N
log

ZN
Z0

(3.22)

=− 1

2
log

(β

2π

)
− 1

N
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2]. (3.23)

The β/2π terms appear in both p and q, and cancel.

The key term for bounding risk performance will ultimately depend on a cumulant

generating function of loss using the prior,

− 1

βN
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2]. (3.24)

66

Providing upper bounds on this term is the main driving force of risk control. With this

key expression controlled by a choice of prior, various notions of risk such as expected

Kullback divergence, mean squared risk, and arbitrary sequence regret can be deduced.

One way to upper bound this cumulant generating function is through the index of

resolvability [8] approach, which relies on the prior probability of a set of good approxi-

mators.

Lemma 3.3 (Index of Resolvability). Let the prior distribution P0 have support S and let

A be any measurable subset of S. Then we have upper bound

− 1

βN
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2] ≤ − logP0(A)

βN
+max

w∈A

1

N

N∑
n=1

1

2
(yn − f(xn, w))

2.

(3.25)

Proof. The proof of this approach is quite simple. The integral on the full space is more

than the integral on a subset, thus restricting to a set A upper bounds the negative log

integral,

− 1

βN
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2] ≤ − 1

βN
log

∫
A

e−
β
2

∑N
n=1(yn−f(xn,w))2P0(dw).

(3.26)

Multiply and divide by the prior probability of the set P0(A).

− logP0(A)

βN
− 1

βN
logEP0 [e

−β
2

∑N
n=1(yn−f(xn,w))2|w ∈ A]. (3.27)

Then upper bound the conditional mean by the largest value of the object in the exponent

for w in A.

This philosophy makes risk control quite clear. First, there must exist at least one point

in the support of the prior which produces a good fit for the data. Second, the prior must

67

place enough probability around this point (or rather, at this point in the case of discrete

priors) so that the prior probability of the set A is not exponentially small in N . Then both

terms of the index of resolvability are controlled.

Note that our finite width neural networks can approximate functions well when the

target function lives in V times the convex hull of signed neurons. For a given input data

xN = (xi)
N
i=1 and for each weight vector w ∈ Sd1 , consider the vector in RN of a single

neuron evaluated at the w · xi points for i ∈ 1, . . . , N . Let the subset of RN denoted

HullN(VΨ) be the closure of the set of convex combinations of V times signed neurons in

Ψ evaluated at xN . This is (the closure of) the set of single-hidden-layer neural networks

with variation at most V , evaluated at the given data. For a vector of target function

values (g(xi))Ni=1, or more generally any vector of values g = (g1, . . . , gN), we denote its

projection as

g̃ = argminf∈HullN (VΨ)∥g − f∥N . (3.28)

Note g̃ is the vector of numerical values g̃ = (g̃1, . . . , g̃N) ∈ RN , which may be interpreted

as the vector of outputs of some network evaluated at the xi points (or a limit thereof), not

the network itself that would give rise to these outputs.

We will also have consideration of Hull(VΨ) defined as the L2(PX) closure of the set

of convex combinations of V times signed neurons in Ψ as functions on [−1, 1]d. The

L2(PX) projection of a function g defined as g̃, the corresponding minimizer of ∥g − f∥2

within Hull(VΨ), is then a function itself not a vector of specific output values.

For the arbitrary sequence regret bounds the best competitor g̃ is the Euclidean pro-

jection into HullN(VΨ), and for the statistical mean square risk bounds it is the L2(PX)

projection into Hull(VΨ).

We now review results for functions g in V times the convex hull of Ψ, concerning

how well a finite width network can approximate them.

68

3.2 Approximation Ability of Single-Hidden-Layer Neu-

ral Networks

First, we recall some known results about the approximation ability of neural networks.

We have the following established approximation result from previous work [36].

Lemma 3.4. Let x1, . . . , xN be an input sequence with each xi ∈ [−1, 1]d. Assume h is a

target function with variation V , that is h
V

lives in the closure of the convex hull of neurons

with ℓ1 controlled weight vectors evaluated at the xi. Then there exists a finite width

network with K neurons and some choice of continuous neurons weights w∗
1, . . . , w

∗
K ∈

(Sd1)
K and outer weights c1, . . . cK ∈ {− V

K
, V
K
}K such that

N∑
i=1

(f(xi, w
∗)− h(xi))

2 ≤ N
a20V

2

K
. (3.29)

We can slightly modify this result to focus on discrete neuron weight vectors in Sd1,M

as opposed to the full continuous space.

Lemma 3.5. Let x1, . . . , xN be a sequence of input values with each xi ∈ [−1, 1]d. As-

sume h lives in HullN(VΨ), the closure of the convex hull of signed neurons scaled by V .

Then there exists a choice of K discrete-valued interior weights (w∗
1, . . . , w

∗
K) ∈ (Sd1,M)K

and signed outer weights ck ∈ {− V
K
, V
K
} such that for any sequence (yi)

N
i=1, the regret

compared to h is bound by

N∑
i=1

(
yi −

K∑
k=1

ckψ(xi · w∗
k)
)2

− (yi − h(xi))
2 ≤ N

a20V
2

K
+N

(V CNa2 + V 2a21)

M
,

(3.30)

where a0, a1, a2 are the bounds on ψ and its derivatives, and CN = maxn≤N |yn|+ a0V .

Proof. Fix x1, . . . , xn and h(x1), . . . , h(xN) (or more generally h1, . . . , hN). Since h lives

69

in the closure of the convex hull of signed neurons scaled by V , for every ϵ > 0 there

exists some finite width neural network with continuous-valued weight vectors wℓ ∈ Sd1

and outer weights cℓ with
∑

ℓ |cℓ| = 1 such that

h̃(x) = V
∑
ℓ

cℓψ(x · wℓ),
N∑
i=1

(h(xi)− h̃(xi))
2 ≤ ϵ. (3.31)

Let L be a random draw of neuron index where L = ℓ with probability |cℓ|. Define

wcont = wL as the continuous neuron vector at the selected random index L, and scont =

sign(cL) as the sign of the outer weight.

Given a continuous vectorwcont of dimension d, we then make a random discrete vector

as follows. Define a d+ 1 coordinate, wcont
d+1 = 1− ∥wcont

1:d
∥1, to have a d+ 1 length vector

which sums to 1. Consider a random index J ∈ {1, . . . d+1} where J = j with probability

|wcont
j |. Given wcont, this defines a distribution on {1, . . . , d + 1}. Draw M iid random

indices J1, . . . , JM from this distribution and define the counts of each index

mj =
M∑
i=1

1{Ji = j}. (3.32)

We then define the discrete vector wdisc ∈ Sd1,M with coordinate values

wdisc
j = sign(wcont

j)
mj

M
. (3.33)

Consider then K iid draws of random indexes L1, . . . LK , as well as corresponding signs

sk = sign(cLk). For each Lk consider M iid drawn indexes Jk1 , . . . , J
k
M . This also defines

continuous vectors wcont
k and discrete vectors wdisc

k . Denote the neural network using a

random set of weights and signs,

f(x,w, s) =
K∑
k=1

V

K
skψ(x · wk). (3.34)

70

Recall the empirical norm and inner product definitions ∥ · ∥2N , ⟨·, ·⟩N from the notation

section. Consider the expected regret using random discrete neuron weights.

E
[
∥y − f(·, wdisc, s)∥2N − ∥y − h∥2N

]
. (3.35)

Note this expectation is with respect to the previously defined distribution for wdisc, wcont,

and s. The data (xi, yi)
N
i=1 are fixed.

Add and subtract the norm using continuous weight vectors, noting that the discrete

and continuous vectors of the same index are dependent via the construction,

E
[
∥y − f(·, wcont, s)∥2N − ∥y − h∥2N

]
(3.36)

+E
[
∥y − f(·, wdisc, s)∥2N − ∥y − f(·, wcont, s)∥2N

]
. (3.37)

Note that using continuous weight vectors the expected value of the random neural net-

work is exactly h̃,

E[
V

K

K∑
k=1

skψ(xi · wcont
k)] =

N∑
i=1

h̃(xi). (3.38)

Thus using a bias variance decomposition we have the bound on expression (3.36),

E
[
∥y − f(·, wcont, s)∥2N − ∥y − h∥2N

]
(3.39)

=
N∑
n=1

Var(f(xi, wcont, s))2 + ∥y − h̃∥2N − ∥y − h∥2N (3.40)

≤N a20V
2

K
+ 2∥y − h∥N∥h− h̃∥N + ∥h̃− h∥2N (3.41)

=N
a20V

2

K
+ 2

√
NCN

√
ϵ+ ϵ. (3.42)

Where we have used that f(x,wcont, s) is an average of K iid terms each bounded by a0V ,

71

so its variance is less than a20V
2/K.

For expression (3.37), perform a second order Taylor expansion of ∥y−f(·, wdisc, s)∥2N

as a function of wdisc centered at wcont. For any other vector w̃, denote the expressions

resi(w, s) = yi −
K∑
k=1

sk
V

K
ψ(xi · wk) (3.43)

ai,k =− sk
2V

K
resi(wcont, s)ψ′(xi · wcont

k) (3.44)

bi,k,k′(w̃, s) =− sk
2V

K
resi(w̃, s)ψ′′(xi · w̃k)δk=k′

+ 2sksk′
V 2

K2
ψ′(xi · w̃k)ψ′(xi · w̃k′). (3.45)

Then for any continuous-valued vector wcont and discrete-valued vector wdisc, there exists

some vector w̃ (in fact along the line between wdisc and wcont) such that the second order

expansion is exact using that w̃ in the second derivative terms,

∥y − f(·, wdisc, s)∥2N (3.46)

=∥y − f(·, wcont, s)∥2N +
N∑
i=1

K∑
k=1

ai,k(xi · (wdisc
k − wcont

k)) (3.47)

+
1

2

n∑
i=1

K∑
k,k′=1

bi,k,k′(w̃, s)(xi · (wdisc
k − wcont

k))(xi · (wdisc
k′ − wcont

k′)). (3.48)

Expanding the terms we have the expression,

E
[
∥y − f(·, wdisc, s)∥2N − ∥y − f(·, wcont, s)∥2N

]
(3.49)

=
N∑
i=1

K∑
k=1

ai,kE[xi · (wdisc
k − wcont

k)] (3.50)

−V

K

N∑
i=1

K∑
k=1

E
[
resi(w̃, s)ψ′′(xi · w̃k)(xi · (wdisc

k − wcont
k))2

]
(3.51)

+
N∑
i=1

E
[(K∑

k=1

sk
V

K
ψ′(w̃k)(xi · (wdisc

k − wcont
k))

)2]
. (3.52)

72

By construction of the distribution, E[wdisc
k |wcont

k] = wcont
k so the first order term (3.50) is

mean 0. Note that for each i, |resi(w̃, s)| ≤ CN , ψ
′(·) ≤ a1, ψ

′′(·) ≤ a2 so we have upper

bound

= (V CNa2 + V 2a21)
N∑
i=1

K∑
k=1

1

K
E[(xi · (wdisc

k − wcont
k))2] (3.53)

= (V CNa2 + V 2a21)
N∑
i=1

E[Var[xi · wdisc
1 |wcont

1]], (3.54)

since the distribution of (wdisc
k , wcont

k) is the same for k = 1, . . . , K.

For a fixed choice of continuous wcont
1 , let xi,d+1 = 0 and consider xi as a d + 1

dimension vector. Then xi·wdisc
1 is the inner product of xi with a vector defined by counts of

the independent random indexes J1
1 , . . . , J

1
M . Therefore, the inner product can equivalently

be written as an average of M iid random variables using these indexes,

Var[xi · wdisc
1 |wcont

1] = Var[
1

M

M∑
t=1

xi,J1
t
|wcont

1] (3.55)

=
1

M
Var[xi,J1

1
|wcont

1] (3.56)

≤ 1

M
, (3.57)

since the |xi,j| are all bounded by 1.

The support of the product measure on discrete weights and outer signs is (Sd1,M)K ×

{−1, 1}K . There must be at least one element of the support that has a regret equal to or

lower than the average regret. Then taking ϵ→ 0 completes the proof.

This result allows for analysis of regret with arbitrary y′s and competitor h. If our yi

values are specifically the outputs of a neural network in the closure of the convex hull, we

can give an improved 1/M2 control instead of 1/M .

Lemma 3.6. Let x1, · · · , xN be a sequence of input values with each xi ∈ [−1, 1]d. As-

73

sume h lives in HullN(VΨ), the closure of the convex hull of signed neurons scaled by V .

Then there exists a choice of K discrete-valued interior weights (w∗
1, · · · , w∗

K) ∈ (Sd1,M)K

and signed outer weights ck ∈ {− V
K
, V
K
} such that

N∑
i=1

(
h(xi)−

K∑
k=1

ckψ(xi · w∗
k)
)2

≤ N
a20V

2

K
+N

a22V
2

4M2
, (3.58)

where a0, a1, a2 are the bounds on ψ and its derivatives.

Proof. See Appendix Section 3.6.1.

Remark 3.1. We make a note here about odd symmetric activation functions, such as as

the tanh function, and non-odd symmetric functions, such as the ReLU squared. For our

established approximators in the convex hull, the signs of the outer weights cr are not

known to us in defining our model. Yet in our Bayesian model we fix the signs of our

outer neuron scalings ck as specific signed values, and they are not modeled as flexible in

the posterior distribution.

For odd symmetric activation functions, we can consider all signed outer weights to be

positive, and any negative outer scalings could be equivalently generated by using negative

inner weight vectors. Thus, we can consider all ck = V
K

in our model and the signed

discussion in the previous proof becomes irrelevant.

For non-odd symmetric activation functions, if we use double the variation Ṽ = 2V

and double the number of neurons K̃ = 2K, fix the first K outer weights to be positive

and the second K to be negative. Then by setting half of inner the weights to be the zero

vector, any selection of K inner weights and K signed outer weights can be generated by

the model twice as wide. In essence, a non-odd symmetric activation function uses twice

the variation and twice the number of neurons to ensure any signed network of size K and

variation V can be generated by a certain choice of interior weights alone and fixed outer

weights.

74

3.3 Arbitrary Sequence Regret

We now apply these results to a specific choice of prior. The discrete uniform prior on

(Sd1,M)K is a uniform distribution with less than (2d + 1)MK possible values. As such,

the negative prior log probability of a single point only grows logarithmically in the di-

mension. By Lemma 3.5, for any target function of the given variation, the set (Sd1,M)K

contains at least one choice of parameters that is a good approximation to the function.

This yields the following result.

Theorem 3.1 (Odd-Symmetric Neurons). Let (xi)Ni be a sequence of input values with

all xi ∈ [−1, 1]d. Let g be a target function and let h be any element of HullN(VΨ), the

closure of the convex hull of signed neurons scaled by V . Let P0 be the uniform prior

on (Sd1,M)K . Assume the neuron activation function is odd symmetric and set all outer

weights as ck = V
K

. For any sequence of values (yi)Ni=1, define the terms

ϵn = yn − g(xn) ϵ̃n = yn − h(xn). (3.59)

Then the average log regret of the sequence of posterior predictive distributions is upper

bounded by

Rlog
N ≤ MK log(2d+ 1)

βN
+
a20V

2

2K
+

(V CNa2 + V 2a21)

2M
+

1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (3.60)

In particular, h may be the HullN(VΨ) projection of g, which is denoted g̃.

Proof. Recall the definition of ∥ · ∥2N and ⟨·, ·⟩N given in the notation section. By Lemmas

3.2 and 3.3, for any set A of discrete neuron values, we can upper bound the average log

75

regret as

− logP0(A)

βN
+

1

2N
max
w∈A

((∥y − fw∥2N − ∥y − g∥2N) (3.61)

=− logP0(A)

βN
+

1

2N
max
w∈A

((∥y − fw∥2 − ∥y − h∥2N) +
1

2N
(∥y − h∥2N − ∥y − g∥2N).

(3.62)

By Lemma 3.5, there exists a single discrete point with bounded regret from h. Select A

as the singleton set at this point. We then consider the number of points in the support of

the prior.

Let w be a vector of length d with ℓ1 norm less than or equal to 1. To make a vector

with only positive entries, use double the coordinates and set w̃j = wj if wj > 0 and

w̃d+j = −wj else. Then add one more coordinate to count how far the ℓ1 norm is from 1,

w̃2d+1 = 1−∥w∥1. Thus, each w vector can be uniquely expressed as a 2d+1 size vector

of positive entries that sums to exactly 1.

Consider the entries of w̃ as having to be multiples of 1
M

. Each w̃ vector is then a

histogram on 2d+1 locations where the heights at each location can be {0, 1, . . . ,M}/M .

An over-counting of the number of possible histograms is then (2d + 1)M . The product

prior on K independent weight vectors gives an additional K power. Since the discrete

uniform prior support set has less than or equal to (2d+ 1)MK points,

− logP0(A) ≤ (MK) log(2d+ 1). (3.63)

Combined with the bound from Lemma 3.5 this completes the proof.

In general, for a non-odd symmetric activation function (e.g. squared ReLU) we use

twice the number of neurons with fixed outer weights to ensure any choice of signed

neurons of half the width can be generated. Thus, we can prove the same order bounds

76

but with slightly different constants. Here, we give the explicit changes, but all future

theorems will be given for the odd-symmetric case and the non-odd symmetric version

can be similarly derived.

Corollary 3.1 (Non-Odd Symmetric Neurons). For a neural network with non-odd sym-

metric neurons, use twice the number of neurons K̃ = 2K neurons and twice the variation

Ṽ = 2V . Set the first K outer weights as positive ck = V
K

and the second K outer weights

as negative ck = − V
K

. Then we have the bound of

Rlog
N ≤ MK̃ log(2d+ 1)

βN
+
a20Ṽ

2

K̃
+

(Ṽ CNa2 + Ṽ 2a21)

2M
+

1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (3.64)

Proof. By Lemma 3.5, there exists some signed neural network of width K that achieves

the given regret bound with target function g. Our chosen network of width K̃ of fixed

signed neurons has the flexibility to generate arbitrary signed (i.e. any number proportion

of positive or negative signs) networks of width K = K̃
2

. The proof then follows.

Theorem 3.2. Let (xi)Ni=1 be a sequence of input values with all xi ∈ [−1, 1]d. Let g

be a target function bounded by a value b and let h be any element of HullN(VΨ), the

closure of the convex hull of signed neurons scaled by V . Let P0 be the uniform prior

on (Sd1,M)K . Assume the neuron activation function is odd symmetric and set all outer

weights as ck = V
K

. For any sequence of values (yi)Ni=1, define the terms

ϵn = yn − g(xn) ϵ̃n = yn − h(xn). (3.65)

77

Then the average squared regret of the posterior mean predictions is upper bounded by

Rsquare
N ≤ MK log(2d+ 1)

βN
+
a20V

2

2K
+

(V CNa2 + V 2a21)

2M
(3.66)

+ 2β
1

N

N∑
n=1

(a0V + b

2
|ϵ̃n|+

(a0V + b

2

)2)2

+
1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (3.67)

Proof. Apply Lemma 3.1 and Theorem 3.1 to upper bound squared regret by log regret

and an additional β term. Note that fw is bounded by a0V and g is bounded by b.

Note that |ϵ̃n| ≤ CN and can provide an upper bound, since ϵ̃ is known to the user. We

next derive the choices of β,M,K which optimize the bounds.

Corollary 3.2. Replace the residuals ϵ̃n with CN in expression (3.67). Denote the value

B1 = (CN +
a0V + b

2
)2 (3.68)

Let

β∗ = γ1

(log(2d+ 1)

N

) 1
4

(3.69)

K∗ = γ2

(N

log(2d+ 1)

) 1
4

(3.70)

M∗ = γ3

(N

log(2d+ 1)

) 1
4
, (3.71)

where

γ1 =
(a0V)

1
2 (

a2V CN+a21V
2

2
)
1
4

2(a0V+b
2

)
3
2 (B1)

3
4

(3.72)

γ2 =
(a0V)

3
2

2(a0V+b
2

)
1
2 (B1)

1
4 (

a2V CN+a21V
2

2
)
1
4

(3.73)

γ3 =
(
a2V CN+a21V

2

2
)
3
4

(a0V)
1
2 (a0V+b

2
)
1
2 (B1)

1
4

. (3.74)

78

Then we have a bound on the squared regret of the form

4
(
a0V (

a0V + b

2
)
) 1

2
(
B1(

a2V CN + a21V
2

2
)
) 1

4
(log(2d+ 1)

N

) 1
4
+

1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n).

(3.75)

In particular, if the function g lives in the convex hull scaled by V and h is chosen to be g,

then ϵn = ϵ̃n and we have an upper bound of

Rsquare
N = O((CN)

3
4

(log(2d+ 1)

N

) 1
4
). (3.76)

In the algorithmM,K must be integers. The closest integer values to the stated continuous

values achieve a similar bound.

Remark 3.2. Equations (3.69), (3.70), (3.71) represent the choice of modeling parameters

that optimize our derived bound. However, we do not advocate plugging in these specific

parameter choices directly into the model and training only one model based on these

values. If, for example, it happens that the target is such that it can be approximated with

an improved 1/K2 instead of 1/K in (3.58) (and hence in (3.66)), then the given bounds

would not provide the best choices ofK,M and β. We instead advocate adaptive modeling

by putting a prior on a number of possible M , K, β values, say 100-1000 possible values

each.

Corollary 3.2 shows one choice of β∗, K∗,M∗ that can achieve bounded regret. If we

include these values in our prior set, by a further index of resolvability argument we can

show using a uniform prior on a finite number of M,K, β possible values, we would pay

a log number of possible values divided by βN price in the bound, which can be easily

controlled. We note that computationally, all different M,K, β combinations result in

different models that can be sampled in parallel and independently on different cores at

the same time and the results combined at the end. Thus, such an approach is amenable to

79

GPU usage and distributed computing from a practical perspective.

3.4 IID Sequence Predictive Risk Control

In the previous section, we studied risk control for arbitrary data sequences with no as-

sumptions on the data. We compared performance in terms of regret to a competitor fit.

Here, we assume training data iid from a data distribution and prove bounds on predictive

risk for future data pairs.

Suppose (xi, yi)
N
i=1 are independent with y having conditional mean E[Y |X = x] =

g(x) and conditional variance Var[Y |X = x] = σ2
x, with bound on the variance maxx σ

2
x ≤

σ2. Recall that our neural network is trained with a gain β. In a typical setting with

assumed independent Gaussian errors, σ2
x = σ2 for each x value and β would be set as a

constant matching the inverse variance β = 1
σ2 . However, we would also like to consider

gains decaying in N , such as β = [(log d)/N]
1
4 . Using such a β, we can reproduce the

arbitrary regret results above and show for the Cesàro mean estimator ĝ,

E[∥g − ĝ∥2] = O(
(log(d)
N + 1

) 1
4
). (3.77)

Note that this statistical risk bound makes no assumptions about the distribution of Y given

X aside from its mean and variance. In particular, the distribution of the data need not be

Gaussian even though we use quadratic loss to define our posterior densities. Additionally,

our sampling gain β does not have to match any data specific value exactly (that is β does

not depend on σ2 which may not be known).

If we further assume the conditional distribution is independent normal with constant

variance, Y |X ∼ Normal(g(X), σ2), and the gain β accurately represents the inverse vari-

ance, β = 1
σ2 , then we can give a similar bound for Kullback risk which has an improved

80

1/3 power

E[D(PY |X∥Qavg
Y |X,XN ,Y N

)] = O(
(log(d)
N + 1

) 1
3
). (3.78)

We first bound the mean squared risk without any assumptions on β and no normality

assumptions.

Theorem 3.3. Let g be a target function with absolute value bounded by b and let g̃ be its

L2(PX) projection into the closure of the convex hull of signed neurons scaled by V . Let P0

be the uniform prior on (Sd1,M)K . Assume the neuron activation function is odd symmetric

and set all outer weights as ck = V
K

. Let (Xi, Yi)
N
i=1 be training data iid with conditional

mean g(Xi) and conditional variance σ2
Xi

with variance bound σ2
x ≤ σ2. Assume the

data distribution PX has support in [−1, 1]d. Then the mean squared statistical risk of the

averaged posterior mean estimator ĝ is upper bounded by

E[∥g − ĝ∥2] ≤ MK log(2d+ 1)

β(N + 1)
+
a20V

2

2K
+

(V (a0V + b)a2 + V 2a21)

2M
(3.79)

+ 2β(
a0V + b

2
)2(σ +

a0V + b

2
)2 + ∥g − g̃∥2. (3.80)

Let

β∗ = γ1

(log(2d+ 1)

N + 1

) 1
4

(3.81)

K∗ = γ2

(N + 1

log(2d+ 1)

) 1
4

(3.82)

M∗ = γ3

(N + 1

log(2d+ 1)

) 1
4
, (3.83)

81

where

γ1 =
(a0V)

1
2 (

V (a0V+b)a2+V 2a21
2

)
1
4

2(a0V+b
2

)
3
2 (σ + a0V+b

2
)
3
2

(3.84)

γ2 =
(a0V)

3
2

2(a0V+b
2

)
1
2 (σ + a0V+b

2
)
1
2 (

V (a0V+b)a2+V 2a21
2

)
1
4

(3.85)

γ3 =
(
V (a0V+b)a2+V 2a21

2
)
3
4

(a0V)
1
2 (a0V+b

2
)
1
2 (σ + a0V+b

2
)
1
2

. (3.86)

Then we have a bound on the mean squared risk of the form

4
(
a0V (

a0V + b

2
)(σ +

a0V + b

2
)
) 1

2
(V (a0V + b)a2 + V 2a21

2

) 1
4
(log(2d+ 1)

N

) 1
4

(3.87)

+ ∥g − g̃∥2. (3.88)

Proof. Note the following expectations are with respect to training data (Xi, Yi)
N
i=1 and

a new input and response pair (X, Y) = (XN+1, YN+1) all iid from the data distribu-

tion PX,Y . Note that since there are many expectations with respect to different random

variables in the proof, we will make explicit use of subscripts to indicate which random

variable each expectation is with respect to. The initial expectation is for the data distri-

bution PX,Y for the training data as well as the new X point which we are evaluating at.

Bring the average of the Cesàro mean outside the square to upper bound

1

2
EP

XN+1,Y N+1
[(g(X)− ĝ(X))2] ≤ 1

2

N∑
n=0

1

N + 1
EP

XN+1,Y N+1
[(g(X)− µn(X))2]

(3.89)

=
1

2
EP

XN+1,Y N+1

[N∑
n=0

(g(Xn+1)− µn(Xn+1))
2

N + 1

]
(3.90)

=
1

2
EP

XN+1,Y N+1

[N∑
n=0

(Yn+1 − µn(Xn+1))
2 − (Yn+1 − g(Xn+1))

2

N + 1

]
, (3.91)

82

where we have added the Y in using the fact that Yn+1 − g(Xn+1) is mean 0 under PX,Y .

This is then exactly the expectation of a squared regret. Define notationRlog
N+1(X

N+1, Y N+1),

Rsquare
N+1 (X

N+1, Y N+1) as the log and squared regret relative to g at the random (Xi, Yi)
N+1
i=1

values. Then by Lemma 3.1 we have,

EP
XN+1,Y N+1

[
Rsquare
N+1 (X

N+1, Y N+1)
]
≤ EP

XN+1,Y N+1

[
Rlog
N+1(X

N+1, Y N+1)
]

(3.92)

+2EP
XN+1,Y N+1

[
β

1

N + 1

N∑
n=0

(
a0V + b

2
|Yn+1 − g(Xn+1)|+ (

a0V

2
)2)2

]
(3.93)

≤EP
XN+1,Y N+1

[
Rlog
N+1(X

N+1, Y N+1)
]
+ 2β(

a0V + b

2
)2(σ +

a0V + b

2
)2. (3.94)

Then by Lemma 3.2,

EP
XN+1,Y N+1

[Rlog
N+1(X

N+1, Y N+1)] ≤ −1

2

1

N + 1

N∑
n=0

EP
XN+1,Y N+1

[(Yn+1 − g(Xn+1))
2]

(3.95)

+
1

β(N + 1)
EP

XN+1,Y N+1
[− log

∫
e−

β
2

∑N
n=0(Yn+1−f(Xn+1,w))2P0(dw)]. (3.96)

Use the ∥ · ∥2N+1 and ⟨·, ·⟩N+1 notation defined earlier. Note the outer expectation in (3.96)

is with respect to XN+1, Y N+1 from the data distribution and the inner integral is for w

using the prior, as a consequence of our index of resolvability bound. Recall that our prior

P0 is absolutely continuous with respect to a reference η with density p0(w). In this proof,

η can be considered as counting measure on (Sd1,M)K for the discrete uniform prior, but in

other instances it could be considered as Lebesgue measure.

Add and subtract g(Xn+1) inside each of the terms in the exponent of (3.96), expand

83

the terms and note the cancellation of the first quadratic term,

−1

2

1

N + 1
EP

XN+1,Y N+1
[∥Y − g∥2N+1] (3.97)

+
1

β(N + 1)
EP

XN+1,Y N+1
[− log

∫
p0(w)e

−β
2
∥Y−g+g−fw∥2N+1η(dw)] (3.98)

=
1

β(N + 1)
EP

XN+1,Y N+1
[− log

∫
p0(w)e

−β
2
∥g−fw∥2N+1−β⟨Y−g,g−fw⟩N+1η(dw)]. (3.99)

Inside the log, multiply and divide by
∫
p0(w)e

−β
2
∥g−fw∥2N+1η(dw), which acts as the nor-

malizing constant of a density with respect to η,

EP
XN+1,Y N+1

[− log
∫ (

p0(w)e
−β

2 ∥g−fw∥2N+1∫
p0(w)e

−β
2 ∥g−fw∥2

N+1η(dw)

)
e−β⟨Y−g,g−fw⟩N+1η(dw)]

β(N + 1)
(3.100)

+
EP

XN+1,Y N+1
[− log

∫
p0(w)e

−β
2
∥g−fw∥2N+1η(dw)]

β(N + 1)
. (3.101)

Interestingly, the density in equation (3.100) can be viewed as a pseudo posterior pn(w|g)

using the g(xi) data points in place of the yi to define the likelihood. This cannot be used

for actual training since the function g is not known to us, but is a tool for risk analysis.

We can then bring the − log, which is a convex function, inside the integral to get an

upper bound in (3.100). This brings the inner product in the exponent down. Then switch

the order of the inner w integral and outer Y N+1|XN+1 expectation. Note in this analysis,

the distribution of w is the prior distribution P0 and is independent of the XN+1, Y N+1

values. Under the data distribution, Y N+1 conditioned on XN+1 is independent of w and

mean g(XN+1), thus the expected value of the inner product is 0 for any choice of w. Thus

84

expression (3.100) is less than 0.

EP
XN+1,Y N+1

[− log
∫ (

p0(w)e
−β

2 ∥g−fw∥2N+1∫
p0(w)e

−β
2 ∥g−fw∥2

N+1η(dw)

)
e−β⟨Y−g,g−fw⟩N+1η(dw)]

β(N + 1)
(3.102)

≤
EP

XN+1
[
∫ (

p0(w)e
−β

2 ∥g−fw∥2N+1∫
p0(w)e

−β
2 ∥g−fw∥2

N+1η(dw)

)
EP

Y N+1|XN+1
[⟨Y − g, g − fw⟩N+1|XN+1]η(dw)]

N + 1

(3.103)

=0. (3.104)

Then consider expression (3.101). This term can be bounded by the logic in Lemma 3.5.

Now, we must make a distinction between the L2(PX) projection of g into the convex

Hull of signed neurons, and a specific choice of finite linear combination of neurons (i.e.

a finite width neural network). Let g̃ be the projection of g into the L2(PX) closure of

the convex hull of signed neurons. g̃ is not itself a finite width neural network, but a limit

thereof. Therefore, let g̃ϵ be a specific finite linear combination of signed neurons scaled

by V that is ϵ close to g̃ in L2(PX) distance. Then, g̃ϵ evaluated at any sequence of values

x1, . . . , xN+1 is an element of the Euclidean closure of the convex Hull of signed neurons

which we have called HullN+1(VΨ).

Add and subtract ∥g − g̃ϵ∥2N+1 in the exponent of expression (3.101) and we have the

85

result,

EP
XN+1

[− log
∫
e−

β
2
(∥g−fw∥2N+1−∥g−g̃ϵ∥2N+1)P0(dw)]

β(N + 1)
+

1

2

EP
XN+1

[∥g − g̃ϵ∥2N+1]

N + 1

(3.105)

=
EP

XN+1
[− log

∫
e−

β
2
(∥g−fw∥2N+1−∥g−g̃ϵ∥2N+1)P0(dw)]

β(N + 1)
+
EPX [(g(X)− g̃(X))2]

2
(3.106)

+
1

2
EPX [2(g(X)− g̃(X))(g̃(X)− g̃ϵ(X))] +

1

2
EPX [(g̃(X)− g̃ϵ)

2]. (3.107)

≤
EP

XN+1
[− log

∫
e−

β
2
(∥g−fw∥2N+1−∥g−g̃ϵ∥2N+1)P0(dw)]

β(N + 1)
+
EPX [(g(X)− g̃(X))2]

2
(3.108)

+ 2bϵ+
1

2
ϵ2. (3.109)

Focus now on expression (3.108). To bound this further, think of g(xi) as the “yi” ob-

servations in Lemma 3.5, and g̃ϵ here is playing the role of the h competitor. The result

of Lemma 3.5 would then apply. However, our g(xi) are now bounded which offers an

improvement. Each instance of CN+1 = max1≤n≤N+1 |yn| + a0V in the result of Lemma

3.5 can be replaced with

max
1≤n≤N+1

|g(xn)|+ a0V ≤ b+ a0V, (3.110)

which is not y dependent. Thus, the random variable y can have unbounded range, yet

its mean function is bounded and the range of the mean function is the relevant term for

the bound. An expression like Theorem 3.1 then follows replacing CN with a0V + b.

Returning to expression (3.94) and applying this bound, we have our final expression,

MK log(2d+ 1)

β(N + 1)
+
a20V

2

2K
+

(V (a0V + b)a2 + V 2a21)

2M
(3.111)

+2β(
a0V + b

2
)2(σ +

a0V + b

2
)2 +

1

2
E[(g(X)− g̃(X))2] + 2bϵ+

1

2
ϵ2. (3.112)

86

Plugging in the stated β∗,M∗, K∗ gives the more specific bound. Then take ϵ→ 0.

When the target g does not have variation less than or equal to V , there is the un-

avoidable squared loss never smaller than ∥g − g̃∥2, the squared loss of the projection.

Nevertheless, the Theorem shows that the mean square risk E[∥g − ĝ∥2] is close to that

minimal squared loss of g̃. A corollary is that by a Pythagorean inequality ĝ is close to g̃

itself in mean squared distance.

Corollary 3.3. Let g be the target function and g̃ its L2(PX) projection into the closure

of the convex hull of signed neurons scaled by V . Assume the risk of the Cesàro mean

estimator is bounded by

E[∥g − ĝ∥2] ≤ ∥g − g̃∥2 +O(
(log(d)

N

) 1
4
) (3.113)

Then the distance from ĝ to the projection g̃ is bounded by this error term decaying N ,

E[∥g̃ − ĝ∥2] = O(
(log(d)

N

) 1
4
) (3.114)

Proof. The closure of the convex hull of signed neurons is a convex set. g̃ being the

projection of g onto the set provides a half-space of functions h with the inner product

⟨h − g̃, g − g̃⟩ less than or equal to 0 which includes that convex set, where here ⟨·, ·⟩ is

the L2(PX) inner product. This means for all points inside the closure of the convex hull,

of which ĝ is a member, we have a Pythagorean inequality,

∥g − g̃∥2 + ∥g̃ − ĝ∥2 ≤ ∥g − ĝ∥2, (3.115)

and thus

∥g̃ − ĝ∥2 ≤ ∥g − ĝ∥2 − ∥g − g̃∥2. (3.116)

87

The conclusion follows by taking the expectation.

In the result of Theorem 3.3, the 1/M dependence in equation (3.80) comes from

applying the approximation result in Lemma 3.5. However, if the target function g itself

is assumed to live in the closure of the convex Hull of signed neurons, we can use the

improved Lemma 3.6 which has a 1/M2 dependence instead. We can then get a risk

control of the orderO([(log d)/N]2/7). The 2/7 power is slightly better than the 2/8 = 1/4

power of the previous theorem.

Corollary 3.4. Let g be a target function and assume it lives in the L2(PX) closure of the

convex hull of signed neurons scaled by V . Let P0 be the uniform prior on (Sd1,M)K . As-

sume the neuron activation function is odd symmetric and set all outer weights as ck = V
K

.

Let (Xi, Yi)
N
i=1 be training data iid with conditional mean g(Xi) and conditional vari-

ance σ2
Xi

with variance bound σ2
x ≤ σ2. Assume the data distribution PX has support in

[−1, 1]d. Then the mean squared statistical risk of the averaged posterior mean estimator

ĝ is upper bounded by

E[∥g − ĝ∥2] ≤ MK log(2d+ 1)

β(N + 1)
+
a20V

2

2K
+
a22V

2

8M2
+ 2β(a0V)2(σ + a0V)2. (3.117)

If we set

M =
(N + 1

log(2d+ 1)

) 1
7 K =

(N + 1

log(2d+ 1)

) 2
7 (3.118)

β =
(log(2d+ 1)

N + 1

) 1
7 (3.119)

we have an error bound of the form

E[∥g − ĝ∥2] ≤
(log(2d+ 1)

N + 1

) 2
7
[1 +

a20V
2

2
+
a22V

2

8
+ 2a20V

2(σ + a0V)2]. (3.120)

Proof. See Appendix Section 3.6.1.

88

For a target function g, consider the distribution for Y |X as Normal(g(X), 1
β
). Con-

sider XN , Y N as training data used to train our Bayesian model independent according to

PX,Y and a new (X, Y) (also denoted XN+1, YN+1) as a input and response arising inde-

pendently from the same distribution. We then bound the expected Kullback divergence

between PY |X and Qavg
Y |X,XN ,Y N

.

Theorem 3.4. Assuming the data distribution is Y |X ∼ Normal(g(X), 1
β
) we bound the

we bound the Kullback risk of the posterior predictive distribution as

E[D(PY |X∥Qavg
Y |X,XN ,Y N

)] ≤ E
[− logEP0 [e

−β
2

∑N+1
i=1 (f(Xi,w)−g(Xi))2]

N + 1

]
. (3.121)

Proof. The proof of this theorem follows much the same as the arbitrary log regret proof,

with a few changes using the iid nature of the data.

The Cesàro average predictive density is a mixture of N + 1 predictive densities

pn(y|x, xn, yn). Since Kullback divergence is a convex function, this is less than the aver-

age of individual divergences

1

N + 1

N∑
n=0

E[D(PY |X∥PY |X,Xn,Y n)]. (3.122)

We assume the training data and new data come iid from the same distribution. Therefore,

the predictive distribution for any PYi∗ |Xi∗ ,Xn,Y n is the same distribution for all i∗ > n.

That is, if a Bayesian model is only trained on data up to index n, all data of higher index

has the same predictive distribution. We can consider our new pair X, Y we are predicting

on as a future index XN+1, YN+1. Thus, we have

1

N + 1

N∑
n=0

E[D(PY |X∥PY |X,Xn,Y n)] (3.123)

=
1

N + 1

N∑
n=0

E[D(PYn+1|Xn+1∥PYn+1|Xn+1,Xn,Y n)]. (3.124)

89

Note that in this form we can recognize via the chain rule of information theory as in

[8] that expression (3.124) is equal to the total Kullback divergence of the product measure

PY N+1|XN+1 from the Bayes joint distribution

QY N+1|XN+1(·) =
∫
(
N∏
n=0

QYn+1|w,Xn+1(·))P0(dw) (3.125)

where QYn+1|w,Xn+1 is Normal(fw(Xn+1), 1/β). That is,

1

N + 1

N∑
n=0

E[D(PYn+1|Xn+1∥PYn+1|Xn+1,Xn,Y n)] (3.126)

=
1

N + 1
EP

XN+1
[D(PY N+1|XN+1∥QY N+1|XN+1)]. (3.127)

However we will derive this expression directly as well, and show that it has the bound

indicated at the right side of (3.121) (this bound on total divergence is akin to one de-

rived in [5]). Consider each individual term in (3.124), we will see a similar telescoping

cancellation as in the log regret proof. Denote the Bayes factor,

Zn = EP0 [
e−

β
2

∑n
i=1(yi−f(xi,w))2

(2π/β)
n
2

]. (3.128)

Then the predictive density pn(yn+1|xn+1, x
n, yn) is the ratio of Zn+1 to Zn,

pn(yn+1|xn+1, x
n, yn) =

Zn+1

Zn
. (3.129)

For each individual Kullback term we have

E[D(PYn+1|Xn+1∥PYn+1|Xn+1,Xn,Y n)] =E[−
β

2
(Yn+1 − g(Xn+1))

2 − log
Zn+1

Zn
] (3.130)

− 1

2
log(

2π

β
). (3.131)

90

Use notation ∥ · ∥N+1, ⟨·, ·⟩N+1 as before. The sum of Kullback risks divided by N + 1 is

− β

2
E[

∥Y − g∥2N+1

N + 1
]− 1

2
log(

2π

β
)− 1

N + 1
E[log

N∏
n=0

Zn+1

Zn
] (3.132)

=− β

2
E[

∥Y − g∥2N+1

N + 1
]− 1

2
log(

2π

β
)− 1

N + 1
E[log

ZN+1

Z0

]. (3.133)

We now proceed with an argument similar to bounding equation (3.96). Consider the

negative log of ZN+1. Recall the prior is absolutely continuous with respect to reference

measure η. Add and subtract g inside the exponent and simplify

E[− logZn+1] = E[− logEP0 [e
−β

2
∥Y−fw∥2N+1] +

N + 1

2
log(

2π

β
) (3.134)

= E[− logEP0 [e
−β

2
∥g−fw∥2N+1] +

β

2
∥Y − g∥2N+1] +

N + 1

2
log(

2π

β
)

(3.135)

+ E[− log

∫
p0(w)e

−β
2
∥g−fw∥2N+1

EP0 [e
−β

2
∥g−fw∥2N+1]

e−β⟨Y−g,g−fw⟩N+1η(dw)]. (3.136)

The second and third terms in (3.135) will cancel with the first and second terms in the

Kullback risk (3.133). Term (3.136) is the same expression as (3.100), and was shown to

be less than 0.

Theorem 3.5. Let g(x) be a target function with absolute value bounded by b and let g̃

be its L2(PX) projection into the closure of the convex hull of signed neurons scaled by

V . Let P0 be the uniform prior on (Sd1,M)K . Assume the neuron activation function is

odd symmetric and set all outer weights as ck = V
K

. Assuming the data distribution has

Y |X ∼ Normal(g(X), 1
β
), with PX having support in [−1, 1]d. We bound the expected

91

Kullback divergence as

E[D(PY |X∥Qavg
Y |X,XN ,Y N

)] ≤ MK log(2d+ 1)

N + 1
+ β

a20V
2

2K
+ β

V (a0V + b)a2 + V 2a21
2M

(3.137)

+ β∥g − g̃∥2. (3.138)

In particular, with the choice

K∗ =
(β
2
V 4)

1
3 (a20)

2
3

(V (a0V + b)a2 + V 2a21)
1
3

((N + 1)

log(2(d+ 1))

) 1
3

(3.139)

M∗ =
(((a0V + b)a2 + V 2a21)

2
3 (β

2
)
1
3

(a0V)
2
3

((N + 1)

log(2(d+ 1))

) 1
3
, (3.140)

we would have a bound of

3(
β

2
)
2
3 (a0V)

2
3 (V (a0V + b)a2 + V 2a21)

1
3

(log(2d+ 1)

N + 1

) 1
3
+ β∥g − g̃∥2. (3.141)

Proof. This proof follows much that same as the proof of Theorem 3.3. Let g̃ be the

L2(PX) projection of g into the closure of the convex hull of signed neurons scaled by V .

Let g̃ϵ be a specific finite width neural network that is within ϵ L2(PX) distance of g̃. Add

and subtract ∥g − g̃ϵ∥2N+1 in the exponent of equation (3.121) to get the expression

E[− logEP0 [e
−β

2
(∥g−fw∥2N+1−∥g−g̃ϵ∥2N+1)]]

(N + 1)
+ β

1

2

E[∥g̃ − g∥2N+1]

N + 1
+ β2bϵ2 +

1

2
βϵ2.

(3.142)

This is the same expression as (3.108), scaled by a β. Doing the same analysis gives the

bound

MK log(2d+ 1)

(N + 1)
+ β

a20V
2

2K
+ β

(V (a0V + b)a2 + V 2a21)

2M
+ β∥g − g̃∥2. (3.143)

92

Note now that β, being the inverse variance of the data distribution, is not a design pa-

rameter we can choose. However, M and K are modeling choices. Setting M∗ and K∗ as

given yields the final expression.

3.5 Other Discrete Priors With Risk Control

We have worked with the discrete uniform prior on (Sd1,M)K and shown it has risk con-

trol via the index of resolvability argument 3.3. This approach decomposes the cumulant

generating function into two terms, based on a subset A of weight values,

− logP0(A)

βN
+

1

N
max
w∈A

N∑
i=1

(g̃(xi)− fw(xi))
2. (3.144)

The first term is the minus log probability (or log of 1 over the probability) of the set

A under the prior. The second term is determined by the worst regret of any point in the

set A relative to g̃.

As our approximation results show 3.5, for any element of the closure of the convex

hull g̃, there exists some element of (Sd1,M)K which has regret bounded by O(N(1
M
+ 1

K
)).

Thus we can make our set A be this point and bound the worst regret over the set.

We must then consider the probability of this single point. The set Sd1,M is a set of

sparse vectors. That is, with d locations that are integer multiples of 1/M that sum to 1 or

less in absolute value, only M << d of the coordinates can be non-zero at any time. Thus

for any element of Sd1,M , most of the coordinates are 0.

As we have shown, |Sd1,M | ≤ (2d+ 1)M , so using a uniform prior we can have control

over the minus log probability of any one point in Sd1,M . Since our prior is product over

w1, · · · , wK , we pay a further factor of K in our log bound to have the bound

max
w∈(Sd1,M)K

− logP0(w) ≤ (MK) log(2d+ 1). (3.145)

93

Importantly, this grows only logarithmically in d and linearly in M and K. With M,K

being a power of N such as N1/4 we can get regret and risk bounds that decay in N .

Here we consider some other discrete priors that similarly have the bound

max
w∈Sd1,M

− logP0(w) = O(M log(d)). (3.146)

These priors are also product over index k so pay a linear factor of K when considering

the full vector of weights.

We define our distributions by first sampling positive integer vectors mk ∈ Zd
+ from a

distribution Q, and then setting absolute values

|wk,j| =
mk,j

M
, j ≤ d. (3.147)

Then for those indexes j where mk,j ̸= 0, we assign a positive or negative sign with

probability 1/2. Note for the distributions Q we will no longer make it a strict condition

that ∥wk∥1 ≤ 1, but under the Q we define Q(∥wk∥1 ≤ 1) is a very likely event, and we

control the minimum probability of any element of Sd1,M .

Thus with a distribution Q over the integer vectors m, the probability of any vector

wk ∈ Sd1,M is defined as

P0(w) =
(1
2

)∑d
j=1 1{wj ̸=0}

Q(M |w|). (3.148)

Define the number of non-zero coordinates as

Z+(w) =
d∑
j=1

1{wj ̸= 0}. (3.149)

Since the elements of Sd1,M are sparse, Z+(w) ≤ M for w ∈ Sd1,M . Then for any element

94

w ∈ Sd1,M , we have bound on the prior probability

max
w∈Sd1,M

− logP0(w) = max
w∈Sd1,M

[
Z+(w) log 2 +− logQ(M |w|)

]
≤M log 2 + max

w∈Sd1,M
− logQ(M |w|).

We now consider a few choices for the Q distribution on absolute values of the integer

components. We require these distributions to satisfy the property,

max
w∈Sd1,M

− logQ(M |w|) = O(M log(d)). (3.150)

Consider that most of the coordinates of the m = M |w| vector are 0, and the sum of

the coordinate values is less than or equal to M . Thus, as a proxy for what our densities

must look like, we would need marginally that the log-likelihood of each mj coordinate is

near linear with slope − log(d) and intercept −M/d,

logQ(mj) ≈ −M
d

−mj log(d). (3.151)

This linear log-likelihood is describing a Geometric distribution, so we seek prior densities

that are similar to independent Geometric random variable in each coordinate. If the joint

probability of an m vector is approximately equal to the product the marginals (two of the

priors we consider are iid in each coordinate so this is exact, one is a multinomial which

for large d is near independent in each coordinate), then this linear marginal log-likelihood

form (3.151) is the correct scaling to give us the prior probability we require,

− logQ(m) ≈ −
d∑
j=1

logQ(mj) ≈M + (
d∑
j=1

mj) log(d) =M(log(d) + 1). (3.152)

Thus, we will consider several distributions Q where the marginal distribution of each

95

coordinate mj = M |wj| is near a geometric distribution. These include a Multinomial,

Geometric, and Poisson distribution that approximately follow this log probability and

have − logQ(M |w|) = O(M log(d)) points for w ∈ Sd1,M .

3.5.1 Multinomial, Geometric, and Poisson Distributions

We want a prior which makes any sparse vector likely. That is, any vector of d positive

integer values where less than M locations are non zero and
∑d

j=1mj ≤M . We consider

different discrete distributions and scale them so that their expected sum of coordinates is

approximately M , EQ[
∑d

j=1mj] ≈ M . Under this scaling, we show these distributions

satisfy the desired log probability bound we desire.

A natural choice is the Symmetric Multinomial distribution in d + 1 dimensions that

sums to M . By symmetric we mean all probabilities in each d + 1 coordinate are 1/(d +

1). Define md+1 = M −
∑d

j=1mj to define a vector which exactly sums to 1 in d + 1

coordinates. Then the symmetric Multinomial in d+ 1 dimensions has the pmf

Sym MultinomialM,d+1(m) = (
1

d+ 1
)M

(
M

m1, · · · ,md+1

)
1{

d+1∑
j=1

mj =M}1{m ∈ (Z≥0)
d+1}.

(3.153)

This can be thought of as sampling j ∈ {1, · · · , d+1} locationsM times with replacement

and assigning 1 unit to the location j selected. There are (d+ 1)M ordered ways to select

the locations, and different permutations of the same selection of indexes gives rise to the

same m vector. Thus every possible vector m which sums to M in d+1 dimensions has at

least one ordered way to select indexes, so the probability of any one point is lower bound

as

min
m∈Zd+1

≥0 ,
∑d+1
j=1 mj=M

[
Sym MultinomialM,d+1(m)

]
≥ (d+ 1)−M , (3.154)

96

which gives upper bound on the minus log probability

max
m∈Zd+1

≥0 ,
∑d+1
j=1 mj=M

− log
[
Sym MultinomialM,d+1(m)

]
≤M log(d+ 1). (3.155)

Note that the coordinates mj are then marginally Binomial(M, 1
d+1

). This choice of

Q is natural and gives sufficiently large probability to any M sparse vector, however the

support of Q is restricted the constrained set {m ∈ Zd+1
≥0 :

∑d+1
j=1 mj = M}. Also, the

different coordinates mj are not quite independent. We would much prefer a product prior

where each coordinate mj is sampled iid from a product distribution, and is allowed to

have unconstrained support. This means that the resulting w vector will not be forced to

live in Sd1,M , but rather each coordinate wj can be any integer multiple of 1/M and the

coordinates do not have to sum to 1. However, we want our priors on Q to make any

element of Sd1,M likely, so instead of a hard constraint that the m vector coordinates sum

to 1, we scale the distribution so their expected sum is 1, EQ[
∑d

j=1mj] =M , which since

they are iid means EQ[mj] =M/d.

One choice is to have the coordinates mj distributed independently from a Geometric

distribution with parameter (1 − M
d
). Then E[

∑d
j=1mj] = M so generating a vector

which sums to 1 is not a hard constraint as in the previous priors, but a highly likely event.

Indeed, checking the joint density,

Q(m) =
d∏
i=1

(1− M

d
)
M

d

mj

= (1− M

d
)d
M

d

∑
j mj

. (3.156)

We see that the density is a function of the sum of the coordinates. Since each w ∈ Sd1,M

has
∑d

j=1M |wj| ≤ M , we would have
∑d

j=1mj ≤ M . This gives lower bound on the

97

probability,

min
m∈Zd+1

≥0 ,
∑d+1
j=1 mj≤M

[
Geometric1−M/d(m)

]
≥ (1− M

d
)d
(M
d

)M
(3.157)

=
(M
d

)M((
1− 1

d
M

) d
M
)M

(3.158)

≈
(M
d

)M
e−M . (3.159)

This upper bounds the minus log probability,

max
m∈Zd+1

≥0 ,
∑d+1
j=1 mj≤M

[
− logGeometric1−M/d(w)

]
≤M log

d

M
− d log(1− M

d
). (3.160)

By standard log inequalities,

− log(1− M

d
) ≤

M
d

1− M
d

for 0 ≤ M

d
≤ 1, (3.161)

which gives rise to the upper bound

max
m∈Zd+1

≥0 ,
∑d+1
j=1 mj≤M

[
− logGeometric1−M/d(m)

]
≤ logM

d

M
+M

1

1− M
d

(3.162)

≈M [log(d)− log(M) + 1]. (3.163)

A Poisson(M
d

) distribution for each mj coordinate will also have the properties we

desire. Again EQ[
∑d

j=1mj] =M and the product density has the structure

PoissonM/d(m) =
d∏
j=1

M
d

mje−
M
d

mj!
=

(M
d

∑d
j=1mj

(
∑d

j=1mj)!
e−M

)((∑d
j=1mj)!

m1! · · ·md!

)
. (3.164)

98

From our previous discussion on the symmetric multinomial, we have lower bound

min
m∈Zd≥0:

∑d
j=1mj=M

M !

m1! · · ·md!
≥ (d/2)−M . (3.165)

This gives lower bound on the joint Poisson probability

min
m∈Zd≥0:

∑d
j=1mj=M

[PoissonM/d(m)] ≥

(
d
M

)−M
e−M

M !
(
d

2
)−M , (3.166)

and minus log probability upper bound

max
m∈Zd≥0:

∑d
j=1mj=M

[− log PoissonM/d(m)] ≤M log
d

M
+ log(M !) +M log(

d

2
) +M.

Apply a Stirling’s bound, this is equal to

=M [2 log(d)− log(M)− log(2)] +M log(M)−M +O(log(M)) +M (3.167)

=M [2 log(d)− log(2)] +O(log(M)). (3.168)

We summarize the results here. Recall that we are looking for discrete prior distribu-

tions with the property

max
w∈Sd1,M

− logQ(M |w|) = O(M log(d)). (3.169)

Our proxy for what these distributions should look like is iid in each coordinate, with

marginal log-likelihoods that are near linear (i.e. near a Geometric distribution in each

coordinate). For each coordinate, the marginal should be approximately approximately

99

linear with slope − log(d), and intercept −M
d

,

logQ(mj) ≈ logQ(mj = 0)−mj log(d) (3.170)

logQ(mj = 0) ≈ −M
d
. (3.171)

We see in this table, the distributions we have proposed have marginal log-likelihoods that

are approximately of this linear form. The Geometric is the most similar to our proxy being

iid in each coordinate with exact linear log-likelihood. All have a bound on (3.169) of the

desired order. We also see in Figure 3.1 for M = 20 and d = 10000 the log-likelihoods

of the proposed densities are near the linear proxy (black line) we conjectured they should

be similar to.

Distribution Proxy Symmetric Multinomial(M,d+ 1)

mj Marginal - Binomial(M, 1/(d+ 1))

logQ(mj) −M log(d)
d

−mj log(d) M log(1− 1/(d+ 1)) + log
(
M
mj

)
−mj log(d)

logQ(mj = 0) −M log d
d

M log(1− 1/(d+ 1))

Max Value M [log(d) + 1] M log(d+ 1)

Table 3.1: Summary of Discrete Prior Likelihoods

Distribution Geometric(1−M/d) Poisson(M/d)

mj Marginal - -

logQ(mj) log(1− M
d
)−mj log(

d
M
) −M

d
− log(mj!)−mj log(

d
M
)

logQ(mj = 0) log(1− M
d
) −M

d

Max Value M [log(d)− log(M) + 1] M [2 log(d)− log(2)] +O(log(M))

Table 3.2: Summary of Discrete Prior Likelihoods

100

0 5 10 15 20

−
1

5
0

−
1

0
0

−
5

0
0

Log Probabilities for M=20 ,d=10000

m_j

lo
g

 P
ro

b

Geometric
Poisson
Multinomial
Proxy Form

Figure 3.1: Plot of Log Prior Probabilities for Different Discrete Priors

3.6 Appendix: Proofs of Additional Lemmas

Here, we present the proofs of results that were too long or tedious to include in the main

body of the chapter.

3.6.1 Improved 1/M2 Regret Proofs

Proof of Lemma 3.6:

Proof. Here we show that when the yi observations are direct outputs of a neural network,

we can give an improved 1/M2 regret control.

Fix x1, · · · , xn and h(x1), · · · , h(xN) (or more generally h1, · · · , hN). Since h lives

101

in the closure of the convex hull of signed neurons scaled by V , for every ϵ > 0 there

exists some finite width neural network with continuous-valued weight vectors wℓ ∈ Sd1

and outer weights cℓ with
∑

ℓ |cℓ| = 1 such that

h̃(x) = V
∑
ℓ

cℓψ(x · wℓ),
N∑
i=1

(h(xi)− h̃(xi))
2 ≤ ϵ. (3.172)

Let L be a random draw of neuron index where L = ℓ with probability |cℓ|. Define

wcont = wL as the continuous neuron vector at the selected random index L, and scont =

sign(cL) as the sign of the outer weight.

Given a continuous vectorwcont of dimension d, we then make a random discrete vector

as follows. Define a d+ 1 coordinate, wcont
d+1 = 1− ∥wcont

1:d
∥1, to have a d+ 1 length vector

which sums to 1. Consider a random index J ∈ {1, · · · d+1} where J = j with probability

|wcont
j |. Given wcont, this defines a distribution on {1, · · · , d + 1}. Draw M iid random

indices J1, · · · , JM from this distribution and define the counts of each index

mj =
M∑
i=1

1{Ji = j}. (3.173)

We then define the discrete vector wdisc ∈ Sd1,M with coordinate values

wdisc
j = sign(wcont

j)
mj

M
. (3.174)

Consider then K iid draws of random indexes L1, · · ·LK , as well as corresponding signs

sk = sign(cLk). For each Lk consider M iid drawn indexes Jk1 , · · · , JkM . This also defines

continuous vectors wcont
k and discrete vectors wdisc

k . Denote the neural network using a

random set of weights and signs,

f(x,w, s) =
K∑
k=1

V

K
skψ(x · wk). (3.175)

102

Recall the empirical norm and inner product definitions ∥ · ∥2N , ⟨·, ·⟩N from the notation

section. Consider the expected regret using random discrete neuron weights.

E
[
∥h− f(·, wdisc, s)∥2N

]
. (3.176)

Note this expectation is with respect to the previously defined distribution for wdisc, wcont,

and s. The data (xi)
N
i=1 are fixed. Using a bias variance decomposition, this is equal to

E
[
∥f(·, wdisc, s)− E[f(·, wdisc, s)]∥2N

]
+ ∥h− E[f(·, wdisc, s)]∥2N (3.177)

The first term is the variance of an average of K iid random variables bounded by a0V ,

and thus will have a 1/K order

E
[
∥f(·, wdisc, s)− E[f(·, wdisc, s)]∥2N

]
(3.178)

=
N∑
i=1

E[
(K∑
k=1

V

K
(skψ(xi · wk)− E[skψ(xi · wk)])

)2
] (3.179)

≤ N
a20V

2

K
(3.180)

Then for the bias term. Add and subtract h̃, the specific finite neural neural net that is ϵ

close to h, inside the square. We have,

∥h− E[f(·, wdisc, s)]∥2N = ∥h̃− E[f(·, wdisc, s)]∥2N (3.181)

+ 2⟨h− h̃, h̃− E[f(·, wdisc, s)]⟩N + ∥h− h̃∥2N (3.182)

≤ ∥h̃− E[f(·, wdisc, s)]∥2N + 4
√
ϵ
√
N(a0V) + ϵ (3.183)

Then recall h̃ is defined by a specific set of weights cℓ whose absolute values sum to 1.

The weights cℓ also define the probabilities of the wcont
k begin equal to wℓ. Thus thus this

103

difference of expectations can be made a common sum over |cℓ|.

∥h̃− E[f(·, wdisc, s)]∥2N (3.184)

= V 2

N∑
i=1

(∑
ℓ

|cℓ|sign(cℓ)[ψ(xi · wℓ)− E[ψ(xi · wdisc
1)|wcont

1 = wℓ]]
)2

(3.185)

Then, noting that wdisc
1 − wcont

1 is mean 0 under the conditional distribution, we may add

in (xi · wdisc
1 − xi · wcont

1)ψ′(xi · wcont
1), which is the first order Taylor expansion of ψ(xi ·

wdisc
1)− ψ(xi · wcont

1). We then have

V 2

N∑
i=1

(∑
ℓ

|cℓ|sign(cℓ)E[(xi · wdisc
1 − xi · wcont

1)ψ′(xi · wcont
1) (3.186)

+ ψ(xi · wdisc
1)− ψ(xi · wℓ)|wcont

1 = wℓ]
)2

. (3.187)

Then take an absolute value inside the expectation to upper bound. By a second order

Taylor expansion and |ψ′′(z)| ≤ a2∀ z ∈ [−1, 1] we have the following bound

∣∣(xi · wdisc
1 − xi · wcont

1)ψ′(xi · wcont
1) + ψ(xi · wdisc

1)− ψ(xi · wℓ)
∣∣

≤ 1

2
a2(xi · wdisc

1 − xi · wcont
1)2

Noting that E[wdisc
1 |wcont

1] = wcont
1 , we have a squared sum of variances,

1

4
a22V

2

N∑
i=1

(
∑
ℓ

|cℓ|Var[xi · wdisc
1 |wcont

1 = wℓ])
2

For a fixed choice of continuous wcont
1 , let xi,d+1 = 0 and consider xi as a d+ 1 dimension

vector. Then xi · wdisc
1 is the inner product of xi with a vector defined by counts of the

independent random indexes J1
1 , · · · , J1

M . Therefore, the inner product can equivalently

104

be written as an average of M iid random variables using these indexes,

Var[xi · wdisc
1 |wcont

1] = Var[
1

M

M∑
t=1

xi,J1
t
|wcont

1] (3.188)

=
1

M
Var[xi,J1

1
|wcont

1] (3.189)

≤ 1

M
, (3.190)

since the |xi,j| are all bounded by 1. Taking ϵ→ 0, we conclude, under the distribution we

have defined on (Sd1,M)K ,

E
[
∥h− f(·, wdisc, s)∥2N

]
≤ N

a20V
2

K
+N

a22V
2

4M2
(3.191)

Proof of Corollary 3.4:

Proof. This proof follows much the same as the proof of Theorem 3.3. Follow the same

steps of the proof up to equation (3.101) where we have the expression

EP
XN+1,Y N+1

[− log
∫
p0(w)e

−β
2
∥g−fw∥2N+1η(dw)]

β(N + 1)
. (3.192)

At this point, note that g itself is assumed th live in the L2(PX) closure of the convex Hull

of signed neurons scaled by V . Thus, let g̃ϵ be some finite convex combination of neurons

scaled by V which is ϵ close to g itself in L2(PX) distance. Add and subtract g̃ϵ inside the

norm in the exponent, then by a Cauchy-Schwarz inequality we have upper bound

EP
XN+1,Y N+1

[− log
∫
p0(w)e

−β
2
∥g̃ϵ−fw∥2N+1η(dw)]

β(N + 1)
+ 4a0V

√
ϵ+ ϵ. (3.193)

105

Apply Lemma 3.6 to the approximation in the exponent, rather than Lemma 3.5 which

gives rise the the 1/M2 term in place of the 1/M . The rest of the proof follows as in

Theorem 3.3 noting that now since g is in the closure of the convex Hull of signed neurons

scaled by V we have bound on g of b = a0V .

106

Chapter 4

Log-Concave Coupling for Greedy
Bayes

4.1 Introduction

Our model for a neural network with K neurons and internal weight vectors of dimen-

sion d results in a parameterized function with Kd parameters overall (note we fix the

outer weights of our network at the start as either ck = ± V
K

and these are not a parameter

to train). In the previous sections, we constructed a posterior distribution, or rather a se-

quence of posteriors using different subsets of the data n ≤ N , that was a joint distribution

on all Kd parameters at once. Our prior treated each d dimensional neuron weight vector

wk as independent, and the different K neurons are then coupled in the log-likelihood via

their joint ability to fit the observed data y,

pn(w1, . . . , wk|xn, yn) ∝
[K∏
k=1

p0(wk)
]
exp

(
− β

2

n∑
i=1

(yi −
K∑
k=1

ckψ(xi · wk))2
)
. (4.1)

This is a natural way to set up a Bayesian model by defining a likelihood that involves

all the parameters at once. However, sampling algorithms have polynomial mixing time

107

bounds dependent on the number of dimensions in the distribution. Thus, by sampling all

Kd parameters at once, we pay a polynomial price in the number of neurons K and the

internal dimension d. Furthermore, our risk control results for the joint Bayesian model

showed square risk is bounded by O([(log d)/N]1/4).

The original direction planned for this research was to build a greedy Bayes procedure,

training the neurons one at a time in order based on the residuals of previous fits. This was

inspired by past work on greedy optimization.

The best known theoretical guarantees for neural network risk control are not for

greedy optimization, but for jointly optimizing all neuron weights jointly. In [11], it is

shown if one can optimize all weights of the network at once to minimize the training loss,

then a network with K = O([N/(log d)]1/2) neurons achieves statistical risk control of the

order O([(log d)/N]1/2).

However, there does not currently exist an algorithm that can optimize all neurons at

once in polynomial dependency on N and d as they grow large. Thus, in the pursuit of a

feasible computation algorithm in high dimensions that achieve risk nearO([(log d)/N]1/2),

greedy optimization procedures that train one neuron at a time have been investigated as

an alternative to joint optimization.

In [9, 31], greedy optimization is shown to achieve a risk of orderO([(d log(N))/N]1/2).

This is only useful for low dimensional problems with d < N , that is not over parame-

terized. For high-dimensional problems, [35] shows greedy optimization achieves risk

control of the order O([(log d)/N]1/3), close to the 1/2 power achievable by joint opti-

mization (if one was actually able to implement either algorithm).

However, similar to the joint optimization problem, even in the greedy optimization

problem there does not exist a known polynomial time algorithm, despite bound on the

theoretical risk performance. Thus, we endeavor to replace greedy optimization with

greedy sampling (one neuron at a time), to produce a method with risk control as well

as computational ability via sampling. We achieve a risk control of O([(log d)/N]1/3) for

108

our greedy Bayes procedure, which matches the greedy optimization order of risk control.

In the joint sampling problem, we have N posteriors to sample from, each with a

random variable of dimension Kd. In the greedy construction, we have NK sampling

problems, yet each is only for a random variable with dimension d, (each weight vector

wk is sampled one at a time, and once for each subset n ≤ N of the data). This has

potential benefits in the number of iterations required to compute the posterior averages,

since the MCMC sampling complexity will only be polynomial in d and not K.

Additionally, our risk control for the greedy Bayes problem proves a bound of order

O([(log d)/N]1/3), which is better than the 1/4 power we achieved for the joint sampling

problem. We now introduce the specifics of how the greedy Bayes estimator is constructed

via a series of recursively defined densities.

4.2 Construction of the Greedy Bayes Estimator

Consider a set of training data (xi, yi)
N
i=1, initialize a fit for each data point and a residual

value

f̂n,0(x) = 0 ∀n ∈ {1, . . . , N} (4.2)

rn,0 = yn. (4.3)

Note the initial fit does not have to be set to be 0 for each data point, we set it as this for

simplicity in the explanation. We wish to improve this fit by creating a linear combination

with 1 new additional neuron.

There are a few important parameters to define the problem. As before, β > 0 will

represent a gain we use in our posterior density. However, we now introduce an α ∈ (0, 1)

as a “mixture weight” to combine the old fit and the new neuron, as well as a sign choice

s ∈ {−1, 1}. One should think of α as small, something like 1/N1/3. As we will see, β

109

does not seem to be as critical a parameter in the greedy problem as it does in the joint

sampling problem, since we now have a small α value to help control the size of the log-

likelihood. Thus in many cases, it is fine to think of β = 1 and α as a fractional power

of 1/N , perhaps with log factors (we will see α = log(K)
K

is a good choice for risk control

later on, with K ≈ N1/3).

Define a prior P0 on neuron weights w and signs s, this prior has support on (Sd1) ×

{−1, 1}. Let η be a reference measure on Sd1 × {−1, 1}. This may be either Lebesgue

measure on Sd1 cross counting measure on {−1, 1}, or when we consider discrete support

sets may be counting measure on Sd1,M × {−1, 1}. In either case, assume the prior P0 has

density p0 with respect to this reference measure. Then for each n ≤ N , define a posterior

for new neuron weight vector w and sign s using the first n residuals

ℓn,1(w, s) =
1

2

n∑
i=1

(ri,0 − αsV ψ(xi · w))2 (4.4)

pn,1(w, s|xn, rn0) =
p0(w, s)e

−βℓn,1(w,s)

EP0 [e
−βℓn,1(w,s)]

. (4.5)

Note that if our neural network uses odd symmetric neurons such as tanh, then the use

of the sign is not needed and we can consider P0(s = 1) = 1 and the sign is fixed to be

positive for all neurons.

The updated fit is then a linear combination of the old fit and the posterior mean using

the mixture weight α,

f̂n,1(x) = (1− α)f̂n,0(x) + αV EPn,1 [sψ(x · w)|xn, rn0]. (4.6)

For each index n, a new residual is defined as the point yn minus (1−α) f̂n−1,1(·) evaluated

110

at xn,

rn,1 = yn − (1− α)f̂n−1,1(xn). (4.7)

Recursively, given a vector of residuals at level k, rnk = (r1,k, . . . , rn,k), define a new

posterior density at level k + 1 as follows,

ℓn,k+1(w, s) =
1

2

n∑
i=1

(ri,k − αsV ψ(xi · w))2 (4.8)

pn,k+1(w, s|xn, rnk) =
p0(w)e

−βℓn,k+1(w,s)

EP0 [e
−βℓn,k+1(w,s)]

. (4.9)

These posteriors are defined for every 0 ≤ n ≤ N . The posterior at n = 0 is just the prior.

Note that the posterior at level k + 1 is defined by residuals at level k. For example, the

posterior at level 2 is defined by the residuals from level 1. Based on this posterior, define

an updated fit at level k + 1 and residuals at level k + 1 as follows,

f̂n,k+1(x) = (1− α)f̂n,k(x) + αV EPn,k+1
[sψ(x · w)|xn, rnk] (4.10)

rn,k+1 = yn − (1− α)f̂n−1,k+1(xn). (4.11)

Using this procedure, we define a set of posterior mean estimators f̂n,k one for each in-

dex n ∈ {0, . . . , N} and each neuron k ∈ {1, . . . , K}. The posterior densities pn,k+1(w, s|xn, rnk)

are function of xn and rnk , and the rnk are a ultimately a function of the (xn, yn). So each

pn,k+1(w, s|xn, rnk) is not a function of (xi, yi) values for index i > n.

At level k, each residual rn,k is a function of data up to index n, xn, yn. Each new fit

function f̂n,k+1 is a function of the residuals of the previous level residuals up to index n,

and then the new residual is f̂n−1,k+1 evaluated at xn. Thus the new set of residuals at level

k + 1 still maintains that rn,k+1 is a function of xn, yn. A dependence diagram is seen in

Figure 4.1.

111

r1,k r2,k r3,k rN,k

f̂1,k+1 f̂2,k+1 f̂3,k+1 f̂N,k+1

...

...

...

...

x1 x2 x3 xN

r1,k+1 r2,k+1 r3,k+1 rN,k+1

Figure 4.1: Flow Diagram for Recursive Greedy Fits

We then define an overall estimator as the Cesàro average of the level K estimators,

ĝ(x) =
1

N + 1

N∑
n=0

f̂n,K(x). (4.12)

The recursive structure can also be decomposed into a specific linear combination of

the individual posterior means

ĝ(x) =
1

N + 1

N∑
n=0

[
αV

K∑
k=1

(1− α)K−kEPn,k [sψ(x · w)|xn, rnk−1] + (1− α)K f̂n,0(x)
]
.

(4.13)

112

Note we have set our initial fit to be f̂n,0(x) = 0, but this does not have to be the case.

We may also be interested in the individual f̂n,k estimators themselves rather than

just the Cesàro average of the level K estimators. Given an arbitrary sequence of data

(xi, yi)
N
i=1, f̂n−1,k(·) evaluated at xn can be used in online learning problem. That is, data

up to index n−1 being used as a predictor for data at index n, and we can study the overall

regret. For a competitor function g, we will be interested in regrets of the form

R̄square
N,k =

1

N

N∑
n=1

1

2

[
(yn − f̂n−1,k(xn))

2 − (yn − g(xn))
2
]
. (4.14)

In fact, it is the study of these online regret objects that is the core of our analysis. Taking

expectations, it provides for Cesàro averages of the statistical risks of f̂n,K and thence for

the risk of the Cesàro average ĝ.

However, theoretical bounds on greedy risk and regret are discussed in the next chap-

ter, here we focus on computational concerns and forming a log-concave coupling which

allows for sampling of the various posterior means.

From a computational perspective, we initialize with a set of initial fits f̂n,0 and initial

residuals rn,0. Then, a set of L iid samples can be made from each Pn,1 distribution,

denote these draws (wℓn,1, s
ℓ
n,1)

L
ℓ=1. From these, new estimated residuals at level 1 can be

computed,

r̂n,1 = yn − (1− α)f̂n,0(xn)− αV
L∑
ℓ=1

1

L
sℓn−1,1ψ(xn · wℓn−1,1). (4.15)

With this new set of r̂n,1 estimated residuals, draws of (sℓn,2, w
ℓ
n,2)

L
ℓ=1 can be made from

Pn,2(·|xn, r̂n1). This recursion can be continued to produce samples (sℓn,k, w
ℓ
n,k) for n ∈

{0, . . . , N}, k ∈ {1, . . . , K}, ℓ ∈ {1, . . . , L}. Then the overall estimator can be written as

113

a combination of the empirical averages,

ĝempirical(x) =
1

N + 1

N∑
n=0

[
αV

K∑
k=1

(1− α)K−k(L∑
ℓ=1

1

L
sℓn,kψ(x · wℓn,k)

)
+ (1− α)K f̂n,0(x)

]
.

(4.16)

Of course, empirical averages are only estimates of the true theoretical average they are ap-

proximating. Thus, each estimated residual r̂n,k is only an approximation of rn,k, so there

are cascading errors in this method of recursively defining our posterior densities empiri-

cally. Thus the ĝempirical which we would compute in practice is not equal to the theoretical

ĝ, which may lead to the joint sampling problem of the previous chapters being more ac-

curate in practice since it does not have the same cascading sequence of approximation

errors that the empirical greedy estimator does. We leave the consideration of ĝempirical vs

ĝ as a study for future work, and instead consider how to sample from the Pn,k(·|xn, rnk−1)

distributions, as well as to provide risk control for ĝ itself.

4.3 Posterior Sign Probability

In this section, we consider the structure of the posterior densities we describe. Given

a vector of residuals rnk−1 = (ri,k−1)
n
i=1 and a set of input data points xn = (xi)

n
i=1,

our densities (with respect to reference measure η which may be considered the product

measure of Lebesgue with counting measure on {−1, 1}) are of the form

pn,k(w, s|xn, rnk−1) =
p0(w, s)e

−β
2

∑n
i=1(ri,k−1−sαV ψ(xi·w))2∫

p0(w, s)e
−β

2

∑n
i=1(ri,k−1−sαV ψ(xi·w))2η(dw, ds)

. (4.17)

Our prior is uniform over weight choices and sign values, and treats each as independent.

Thus we may consider the integral conditioned on s = 1 and s = −1 separately, and the

114

posterior probability of s = −1, 1,

pn,k(w, s|xn, rnk−1) = pn,k(w|s, xn, rnk−1)pn,k(s|xn, rnk−1). (4.18)

where

pn,k(w|s, xn, rnk−1) =
p0(w)e

−β
2

∑n
i=1(ri,k−1−sαV ψ(xi·w))2∫

p0(w)e
−β

2

∑n
i=1(ri,k−1−sαV ψ(xi·w))2η(dw)

(4.19)

pn,k(s|xn, rnk−1) =

∫
p0(w)e

−β
2

∑n
i=1(ri,k−1−sαV ψ(xi·w))2η(dw)∫

p0(w)[e
−β

2

∑n
i=1(ri,k−1−αV ψ(xi·w))2 + e−

β
2

∑n
i=1(ri,k−1+αV ψ(xi·w))2]η(dw)

.

(4.20)

pn,k(s = 1|xn, rnk−1) is then a value between 0 and 1 which indicates the posterior prob-

ability that the positive sign is chosen. pn,k(w|s, xn, rnk−1) is then only a distribution over

w once a sign is fixed in the conditioning. Note the index k is not relevant to the structure

of this density, the sampling problem is the same for all k just with different input resid-

uals. Thus we shall drop the k indexing and simply consider rn as some vector of input

residuals.

In order to produce samples from this posterior density, we must be able to accomplish

two tasks:

1. Sample from both pn(w|s = 1, xn, rn) and pn(w|s = −1, xn, rn) as needed.

2. Compute the posterior probability of a positive sign pn(s = 1|xn, rn).

Assume we are able to accomplish Task 1 using our method of log-concave coupling

(we will discuss this shortly in the next section). Thus, assume we have access to L empir-

ical samples (w+
ℓ)

L
ℓ=1 from pn(w|s = 1, xn, rn) and (w−

ℓ)
L
ℓ=1 from pn(w|s = −1, xn, rn).

Then we can compute an empirical estimate of p̂n(s = 1|xn, rn). To produce a pool of

samples from the joint distribution on signs and weights, for every index ℓ we set (wℓ, sℓ)

equal to the ℓ positive sampled point (w+
ℓ , 1) with probability p̂(s = 1|xn, rn) or instead

115

equal to the ℓ negative sampled point (w−
ℓ ,−1) with probability 1 − p̂n(s = 1|xn, rn).

Thus, we consider methods to approximate p̂n(s = 1|xn, rn) given a pool of samples from

the positive and negative sign conditional densities on w.

Note if we are using an odd symmetric neuron activation function such as a tanh,

we can instead consider our prior as P0(s = 1) = 1 and this discussion on posterior

sign probabilities is not necessary, we can sample all our neurons from the positive sign

conditional.

4.3.1 Methods to Compute Posterior Sign Probability Given Samples

Given empirical samples from the positive and negative sign conditional, we consider four

possible ways to estimate p̂(s = 1|xn, rn) of increasing complexity.

a) Basic 0-1 Probability Estimate

The first option is to choose p̂n(s = 1|xn, rn) as either 0 or 1 depending on if the neuron

values from the positive sampling have better loss than the negative sampling. It is most

likely that one sign choice is far superior to the other, so it is likely that the true posterior

sign probability is very near either 1 or 0. Define

ℓ+ =
1

Ln

L∑
ℓ=1

n∑
i=1

(ri − αV ψ(xi · w+
ℓ))

2 (4.21)

ℓ− =
1

Ln

L∑
ℓ=1

n∑
i=1

(ri + αV ψ(xi · w−
ℓ))

2 (4.22)

and set

p̂n(s = 1|xn, rn) = 1{ℓ+ < ℓ−}. (4.23)

116

b) Importance Sampler

The 0− 1 estimator is a crude estimator. Instead, consider decomposing the posterior sign

probability in two ways as expectations over w|s = 1 and w|s = −1 respectively,

pn(s = 1|xn, rn) = 1

1 + EPn [
e−

β
2

∑n
i=1

(ri+αV ψ(xi·w))2

e−
β
2

∑n
i=1

(ri−αV ψ(xi·w))2
|s = 1, xn, rn]

(4.24)

=
1

1 + EPn [e
−2αβV

∑n
i=1 riψ(xi·w)|s = 1, xn, rn]

. (4.25)

pn(s = −1|xn, rn) = 1

1 + EPn [
e−

β
2

∑n
i=1

(ri−αV ψ(xi·w))2

e−
β
2

∑n
i=1

(ri+αV ψ(xi·w))2
|s = −1, xn, rn]

(4.26)

=
1

1 + EPn [e
2αβV

∑n
i=1 riψ(xi·w)|s = −1, xn, rn]

. (4.27)

Given that we have empirical samples from each of these two densities, we can empirically

estimate these two fractions. Then we can estimate p̂n(s = 1|xn, rn) as the average of

these two fractions, which makes use of all the samples we have available

p̂n(s = 1|xn, rn) = 1

2

(1

1 +
∑L

ℓ=1
1
L
e−2αβV

∑n
i=1 riψ(xi·w

+
ℓ)

+
1

1 +
∑L

ℓ=1
1
L
e2αβV

∑n
i=1 riψ(xi·w

−
ℓ)

)
.

(4.28)

Note that these empirical averages could be highly variable, so this estimator may not

have very good performance in estimating the probability.

c) Discriminant Estimator

The fraction pn(s=1|xn,rn)
pn(s=−1|xn,rn) is the ratio of the partition function (or normalizing constant)

of pn(w|s = 1, xn, rn) compared to pn(w|s = −1, xn, rn). With empirical samples from

each density, we can mix the samples together and then remove the labels. Then if we try to

117

reclassify the samples as which set they came from, the ratio of these partition functions is

a parameter of the classifier. By solving for the optimal classifier, we can get an estimate of

the ratio of the partition functions. This method is based on the technique of discriminant

sampling to estimate partition functions [46]. Define

Z+ =

∫
p0(w)e

−β
2

∑n
i=1(ri−αV ψ(xi·w))2η(dw) (4.29)

Z− =

∫
p0(w)e

−β
2

∑n
i=1(ri+sαV ψ(xi·w))2η(dw). (4.30)

Then take our 2L samples from the positive and negative signed density and put them to-

gether into one set of sampled points. Remove the class labels, either positive or negative,

from each sample. Then the conditional probability of the sign label of any single element

in the set is equal to

pn(s = 1|w) =
1
Z+
e−

β
2

∑n
i=1(ri−αV ψ(xi·w))2

1
Z+
e−

β
2

∑n
i=1(ri−αV ψ(xi·w))2 + 1

Z−
e−

β
2

∑n
i=1(ri+αV ψ(xi·w))2

(4.31)

=
1

1 + Z+

Z−
e−2βαV

∑n
i=1 riψ(xi·w)

(4.32)

pn(s = −1|w) =
Z+

Z−
e−2βαV

∑n
i=1 riψ(xi·w)

1 + Z+

Z−
e−2βαV

∑n
i=1 riψ(xi·w)

. (4.33)

Define c = Z+

Z−
as a value which is not know to us. Then we can ask, given the true labels

sℓ, what choice of c has the highest log probability for correctly classifying the points in

our set,

argmaxc≥0

L∑
ℓ=1

log
(1

1 + ce−2βαV
∑n
i=1 riψ(xi·w

+
ℓ)

)
+

L∑
ℓ=1

log
(ce−2βαV

∑n
i=1 riψ(xi·w

−
ℓ)

1 + ce−2βαV
∑n
i=1 riψ(xi·w

−
ℓ)

)
.

(4.34)

118

Taking the derivative in c and setting it equal to 0, the condition for the maximizing c is

1 =
1

L

L∑
ℓ=1

ce−2βαV
∑n
i=1 riψ(xi·w

+
ℓ)

1 + ce−2βαV
∑n
i=1 riψ(xi·w

+
ℓ)

+
1

L

L∑
ℓ=1

ce−2βαV
∑n
i=1 riψ(xi·w

−
ℓ)

1 + ce−2βαV
∑n
i=1 riψ(xi·w

−
ℓ)
. (4.35)

This right hand side is an increasing function in c with value 0 at c = 0 and value 2 as

c→ ∞. Define the right hand side of the expression as

R(c) =
1

L

L∑
ℓ=1

ce−2βαV
∑n
i=1 riψ(xi·w

+
ℓ)

1 + ce−2βαV
∑n
i=1 riψ(xi·w

+
ℓ)

+
1

L

L∑
ℓ=1

ce−2βαV
∑n
i=1 riψ(xi·w

−
ℓ)

1 + ce−2βαV
∑n
i=1 riψ(xi·w

−
ℓ)
. (4.36)

We can then estimate c using a binary search algorithm, terminating at a c′ with |1 −

R(c′)| ≤ ϵ. Initialize c0 = 0 and c1 = 1. IfR(c1) > 1, perform a binary search between the

endpoints c0, c1 using the midpoint each time until we get a value c′ where |1−R(c′)| < ϵ

for some pre-chosen ϵ. If R(c1) < 1, set c0 = c1, c1 = 2 ∗ c1. Check now if R(c1) < 1. If

so, repeat this doubling process until eventually we have a R(c1) > 1. Then at that point,

perform a binary search as before. Then our estimate of p̂n(s = 1|xn, rn) is

p̂n(s = 1|xn, rn) = c′

1 + c′
. (4.37)

d) Using Recursive Bayes Factors

Our object of interest is to compute the Z+ and Z− given in equation (4.29) (4.30). Con-

sider a slight rescaling and allowing us to index by n, we define the Bayes factors,

Z+
n =

∫
p0(w)

(β
2π

)n
2 e−

β
2

∑n
i=1(ri−αV ψ(xi·w))2η(dw) (4.38)

Z−
n =

∫
p0(w)

(β
2π

)n
2 e−

β
2

∑n
i=1(ri+αV ψ(xi·w))2η(dw). (4.39)

119

The log ratio of posterior sign probability is then equal to the log difference of the Bayes

factors

log
pn(s = 1|xn, rn)
pn(s = −1|xn, rn)

= logZ+
n − logZ−

n . (4.40)

Then, consider the ratio of two Bayes factors of successive indexes

Z+
n

Z+
n−1

= (
β

2π
)
1
2

∫
e−

β
2
(rn−αV ψ(xn·w))2pn−1(w|s = 1, xn−1, rn−1)η(dw). (4.41)

This can be computed as an expectation over pn−1(w|xn−1, rn−1). The object in the in-

tegrand has bounded range between [e−
β
2
(|rn|+αa0V)2 , 1], so the variance of an empirical

estimate of this integral would be small. Thus we may write

logZ+
n − logZ−

n (4.42)

=
n−1∑
i=0

log
Z+
i+1

Z+
i

− log
Z−
i+1

Z−
i

(4.43)

=
n−1∑
i=0

logE[e−
β
2
(ri+1−αV ψ(xi+1·w))2|s = 1, xi, ri] (4.44)

−
n−1∑
i=0

logE[e−
β
2
(ri+1+αV ψ(xi+1·w))2|s = −1, xi, ri]. (4.45)

This would require 2n sampling problems, each with their own polynomial dependence

on d for the MCMC sampling, to estimate the posterior sign probability. This then is the

most computationally intensive method to approximate the posterior sign probability of

the methods we have discussed, but has the potential to be the most accurate.

120

4.4 Log-Concave Coupling

4.4.1 Reverse Conditional Density

Therefore, under the assumption we are able to sample pn(w|s = 1, xn, rn) and pn(w|s =

−1, xn, rn) we are able to estimate p̂n(s = 1|xn, rn). We now focus on constructing a

log-concave coupling for sampling w with a fixed sign choice.

Assume a fixed sign value s and consider the density

pn(w) = pn(w|s, xn, rn) ∝ e−
β
2

∑n
i=1(ri−αsV ψ(xi·w))2 , (4.46)

Going forward, we will refer to this density only as pn(w) and the conditioning on a choice

of xn, rn, s is implied.

Then this is exactly the form of densities we studied in the joint sampling problem if

we consider K = 1 and Ṽ = αV . Thus, the log-concave coupling results follow from the

previous proofs in the case K = 1 and taking note of the α appearing alongside the V . We

restate the relevant quantities here in terms of α and V , but note all proofs follow from the

joint sampling case.

Here we side-by-side compare the joint sampling problem with the individual sampling

problem to note the similarities and the differences. In the joint sampling problem, we

define

resi(w) = yi −
K∑
k=1

sk
V

K
ψ(xi · wk) (4.47)

pn(w) ∝ e−
β
2

∑n
i=1(resi(w))2 . (4.48)

121

An important quantity we define is

Cn = max
n

|yn|+ a0V, (4.49)

such that

max
i≤n,w∈(Sd1)K

|resi(w)| ≤ Cn. (4.50)

We then use this to define our ρ for the forward coupling. If we expand β(resi(w))2 we

see the leading linear term on ψ has a β scaling,

β(resi(w))2 = βy2i − 2β
K∑
k=1

V

K
skyiψ(xi · wk) + β(

K∑
k=1

V

K
skψ(xi · wk))2. (4.51)

We ultimately determine that Kd = O((βN)2) is needed to achieve a log-concave cou-

pling.

For greedy sampling, define the value,

˜resi(w) = ri − αV sψ(xi · w) (4.52)

pn(w) ∝ e−
β
2

∑n
i=1(˜resi(w))2 . (4.53)

Now, we have already referred to rn as the “residuals” that we are defining our density

with. So we will call ˜resi(w) the “sampling residuals” in this context, as they still repre-

sent a useful quantity to directly compare results in the joint sampling case to the greedy

sampling case. We now define

C̃n = max
i≤n

|ri|+ αa0V, (4.54)

122

such that

max
i≤n,w∈(Sd1)K

| ˜resi(w)| ≤ C̃n. (4.55)

If we expand β(˜resi(w))2, we see the leading linear term has an αβ scaling. If α is less

than 1 (indeed, think of it as log(N)

N1/3), then the α2 is much smaller than the α term, and the

linear term is the dominant term in defining the likelihood.

β(˜resi(w))2 = βr2i − 2αβsV riψ(xi · w) + βα2V 2(ψ(xi · w))2. (4.56)

We will ultimately conclude that d = O((αβN)2) is needed to achieve a log-concave

coupling for the greedy sampling problem. In our later risk analysis for the greedy case,

there does not seem to be any improvement using a β which is not constant order. Thus,

while we state our results for general β here, one may consider β = 1 and α as 1 over

some fractional power of N with log factors.

For our greedy sampling problem, denote the Hessian as Hn(w) ≡ ∇2 log pn(w). The

density pn(w) is log-concave if Hn(w) is negative definite for all choices of w. For any

vector u ∈ Rd, the quadratic form uTHn(w)u can be expressed as

−β
n∑
i=1

(
sαV ψ′(w · xi)u · xi

)2

+ βαV s
n∑
i=1

˜resi(w)ψ′′(w · xi)(u · xi)2. (4.57)

The first term is negative, but the second term may be positive or negative since the signs

are not known. We then go about defining n auxiliary random variables ξi as follows.

Define the value

ρ =

√
3

2
a2αβV C̃n. (4.58)

123

For a positive δ ≤ 1/16, we also define a constrained set,

B =
{
ξ ∈ Rn : max

j
|

n∑
i=1

xi,jξi| ≤ n+

√
2 log(

2d

δ
)

√
n

ρ

}
. (4.59)

Define the function,

Z(w) = log

∫
B

n∏
i=1

(ρ
2π

) 1
2 e−

ρ
2
(ξi−xi·w)2dξ. (4.60)

We then define the unrestricted conditional density for ξ1, . . . , ξn with respect to Lebesgue

measure as

pn(ξ|w) =
(ρ
2π

)n
2 e−

ρ
2

∑n
i=1(ξi−xi·w)2 . (4.61)

The restricted conditional density forcing ξ ∈ B is defined as

p∗n(ξ|w) = 1B(ξ)
(ρ
2π

)n
2 e−

ρ
2

∑n
i=1(ξi−xi·w)2e−Z(w). (4.62)

Using the restricted conditional density p∗n(ξ|w) paired with the target density pn(w), this

defines a joint density p∗n(w, ξ) as well as induced marginal p∗n(ξ) and reverse conditional

p∗n(w|ξ).

The following results are restatements of the joint sampling results but in a greedy

setting. The proofs of these results follow from the joint sampling case by setting K = 1,

using our new definition or ρ, and using C̃n in place of Cn.

Lemma 4.1. For any weight vector w with ∥w∥1 ≤ 1 the set B has probability under

p(ξ|w) at least

P (ξ ∈ B|w) ≥ 1− δ√
2 log(2d/δ)

. (4.63)

124

Lemma 4.2. For any specified vector u ∈ Rd, define the value

σ̃2 =

∑n
i=1(u · xi)2

ρ
. (4.64)

For positive values δ ≤ 1/16 with d ≥ 4, we then have upper bounds,

|u · ∇Z(w)| ≤ ρσ̃

1− δ

δ√
2π

(4.65)

and

|uT(∇2Z(w))u| ≤ ρ2σ̃2

√
2π

δ

1− δ

(
2
√
2 log(1/δ) +

ρ2σ̃2

√
2π

δ

1− δ

)
. (4.66)

Note both bounds go to 0 as δ → 0, and thus can be made arbitrarily small for a certain

choice of δ.

Theorem 4.1. Define the notation

H1(δ) =
2√
2π

δ

1− δ

√
2 log

2

δ
(4.67)

H2(δ) =
(
a2αβV C̃n

)2 1

2π

δ2

(1− δ)2
. (4.68)

Assume a sufficiently small δ ≤ 1
16

that satisfies

H1(δ) ≤
1

100
(4.69)

H2(δ) ≤
1

10
. (4.70)

For the continuous uniform prior, with ξ restricted to the set B defined by δ, and ρ as in

equation (4.58), the reverse conditional density p∗n(w|ξ) is a log-concave density in w, for

any ξ in B.

125

Corollary 4.1. A positive δ which satisfies,

δ ≤ min
(1

300
,

√
2π

11

1

a2αβV C̃n

)
, (4.71)

will satisfy conditions (4.69), (4.70).

Note α should be considered quite small, like log(N)

N1/3 , so the 1/300 condition should be

considered the dominant term to satisfy.

4.4.2 Marginal Density

As before, the score and Hessian of the marginal density p∗n(ξ) are determined by the mean

and variance of the reverse conditional density p∗n(w|ξ). Thus the object to study to show

the marginal p∗n(ξ) is log-concave is the maximum variance of uTXw for any unit vector

u (this is the previous joint sampling result now with K = 1 neuron).

Lemma 4.3. The density p∗n(ξ) is log-concave if for any unit vector u ∈ Rn the variance of

a particular linear combination of w, namely uTXw, with respect to the reverse conditional

p∗n(w|ξ) is less than 1/ρ ,

VarP ∗
n
[uTXw|ξ] ≤ 1/ρ, (4.72)

for ξ in the convex support set B.

We then study this variance using a Hölder inequality as before. However, with a β

and an α in the definition of log(pn(w)) we must make a slightly modified definition of

the CGF function Γ that we work with. Define the function

hnξ (w) = −β
2

n∑
i=1

(ri − αsV ψ(xi · w))2 −
n∑
i=1

ρ

2
(ξi − xi · w)2 − Z(w). (4.73)

126

Define the function shifted by its mean under the prior

h̃nξ (w) = hnξ (w)− EP0 [h
n
ξ (w)]. (4.74)

Define its cumulant generating function with respect to the prior as

Γnξ (τ) = logEP0 [e
τh̃nξ (w)]. (4.75)

Then the following results carry over from the joint sampling problem.

Lemma 4.4. For any integer ℓ ≥ 1 and for any vector u ∈ RKd we have the upper bound

VarP ∗
n
(u · w|ξ) ≤

(
EP0 [(u · w)2ℓ]

) 1
ℓ
e
ℓ−1
ℓ

Γnξ (
ℓ
ℓ−1

)−Γnξ (1). (4.76)

Lemma 4.5. For any unit vector u ∈ Rn,

EP0 [(u
TXw)2ℓ]

1
ℓ ≤ 4ℓn√

e d
. (4.77)

Lemma 4.6. Denote the constants

A1 = 2a1 + 4

√
3

2
a2 (4.78)

A2 =
(
2 +

1√
π

)√
2a2

√
3

2
. (4.79)

Assume positive δ ≤ 1
16
, d ≥ 4. For any positive integer ℓ ≥ 1 and any ξ from the

constrained set B, we have

ℓ− 1

ℓ
Γnξ (

ℓ

ℓ− 1
)− Γnξ (1) ≤ A1

αβV C̃nn

ℓ
+ A2

√
αβV C̃nn

ℓ

(√
log(

2d

δ
)
)
. (4.80)

127

Theorem 4.2. Assume δ ≤ 1
16
, d ≥ 4. Further assume that

log
(2d
δ

)
≤ αβN, (4.81)

which is a mild condition that d not be exponentially large in N .

Define A1, A2 as in (4.78), (4.79) and define the constant

A3 = 4

√
3

2e
a2(C̃NV)

3
2 [A1 + A2(C̃NV)

1
2]. (4.82)

Let d satisfy

d ≥ A3(αβN)2. (4.83)

Then for all n ≤ N , the marginal density for p∗n(ξ) is log-concave under the continuous

uniform prior. If equation (4.83) is a strict inequality, the density is strictly log-concave.

128

Chapter 5

Statistical Risk for Greedy Bayes

5.1 Introduction

Our method of risk control for the greedy Bayes estimator is different than our method to

control the risk of the joint sampling algorithm, but does share some similarities. We start

by first analyzing arbitrary sequence regret, and then treat risk as a form of expected regret.

We first analyze log regret, then relate this to square regret, square risk can be analyzed as

an expected square regret.

When sampling all neurons at once, there is only one log regret object to consider, and

that is the cumulative log regret using the sequence of predictive densities. We then bound

the log regret of this object from any particular target function, noting there is at least one

set of parameters that is a good fit for the target in the prior support, and using the index

of resolvability argument.

However, in the greedy case we have a different regret at every level k of our iterative

sampling procedure. We will show a recursive relationship between regret at level k + 1

and regret at level k

Ak+1 ≤ (1− α)Ak + τC (5.1)

129

for some 0 ≤ α, τ ≤ 1 and some constant C. With α and τ small, this recursive relation-

ship can be shown to imply decay in the successive regret bounds at each level k of the

iteration. For example, it is a simple task to show the following result [49, Lemma 4.5.4]

Lemma 5.1. Let A0, A1, . . . , AK be a sequence of values following an iterative formula

Ak ≤ (1− α)Ak−1 + τC, (5.2)

for 1 ≤ k ≤ K, τC ≥ 0. Then the final termAK in the recursion can be bounded explicitly

as

AK ≤ (1− α)KA0 + τC
1− (1− α)K

α
. (5.3)

In particular, the choice α = log(K)
K

and τ = α2 results in the bound

AK ≤ 1

K
max(A0, 0) +

logK

K
C. (5.4)

With careful choice of the α and τ (which are functions of the α, β,M,N,K of our

problem), we will show such a recursion arises in the regret terms of our greedy Bayes

method.

First, we review some greedy optimization results to show how such a recursion is

typically established in an optimization problem.

5.2 An Overview of Greedy Optimization Procedures for

Neural Networks

There is a long history of greedy methods to continually improve a linear combination of

functions by adding in one simple function at a time [7, 34, 40, 31, 9]. Consider if we have

130

a (possibly uncountable) library of base functions H and we want to construct a function

which is a linear combination of elements of that library. If one has an existing function f

which is a linear combination of elements of H, we can define a new function by taking

a linear combination with an element of the library, f ′(x) = α1f(x) + α2h(x) for some

h ∈ H and α1, α2 ∈ R. This new function f ′ can be taken as our new base function, and

we can repeat the process to add in another element of the library.

Say this algorithm is repeated K times so we have recursively defined functions

fk = αk,1fk−1 + αk,2hk. (5.5)

This algorithm requires a sequence of update weights (αk,1, αk,2)Kk=1 as well as a selection

rule to select hk at each iteration. The method of recursively updating a function via a

selection rule can also be applied to other greedy algorithms such as the Frank Wolfe

algorithm [23].

There are a variety of ways to define the update weights αk,1, αk,2 and selection rule

for hk. Say we have a sequence of values (xi, yi)ni=1 and a loss function L and our goal is

to minimize the empirical loss using fK at the termination of our greedy algorithm

min
n∑
i=1

L(yi, fK(xi)). (5.6)

Then the selection rule is usually to pick hk to minimize the loss at iteration k, or some

penalized loss to prefer specific elements of H. The updates weights (αk,1, αk,2)
K
k=1 can

themselves also be part of the optimization at each iteration k of the algorithm. That is,

our selection rule could be

αk,1, αk,2, hk = min
a,b∈R,h∈H

n∑
i=1

L(yi, afk−1(xi) + bh(xi)) + pen(a, b, h), (5.7)

for some potential penalty function. However, this often results in a difficult optimiza-

131

tion problem. Instead, the update weights themselves do not have to be considered as an

optimization problem, and a pre-selected sequence of weights can be chosen. It is often

chosen so that αk,1 + αk,2 = 1, αk,1, αk,2 > 0 so that our fits fk are convex combinations

of elements of the library whose weights of combination add to 1. We can also then only

have one value αk ∈ (0, 1) at each iteration k and have

fk = (1− αk)fk−1 + αkhk. (5.8)

The αk can vary at each iteration k, for example αk = 1/k starting off with large weights

of combination and cooling down to lower weights. However, it may also be desirable to

have αk constant and small at each iteration of the algorithm, for example we will work

with αk = α = log(K)
K

at each iteration of our algorithm.

Then, with a fixed choice of α we may define our selection rule for hk to minimize the

loss at iteration k based on the previous fit,

hk = min
h∈H

n∑
i=1

L(yi, (1− α)fk−1(xi) + αh(xi)). (5.9)

Specializing to our case of neural networks, given an activation function ψ our function

library is all signed neurons with interior weights with ℓ1 norm less than 1 scaled by V ,

H = {h : h(x) = sV ψ(x · w), s ∈ {−1, 1}, w ∈ Rd, ∥w∥1 ≤ 1}. (5.10)

Our loss function will be chosen as square loss, and our update rule for the neurons is

fk = (1− α)fk−1 + αV skψ(wk, ·) (5.11)

sk, wk = min
s∈{−1,1},∥w∥1≤1

n∑
i=1

(yi − (1− α)fk−1(xi)− αsV ψ(xi · w))2. (5.12)

The key outcome of this selection rule is that we can establish a recursive relationship

132

(5.2) between the loss at each iteration k of the algorithm. We can then apply Lemma 5.1

to bound the loss of the terminal linear combination.

Lemma 5.2 (Greedy Optimization Lemma). Let (xi)Ni=1 be a sequence of input values and

(hi)
N
i=1 be a pre-existing vector of fit values. For some value 0 < α < 1, given a neuron

weight vector w ∈ Sd1 and a sign s ∈ {−1, 1}, define the new vector

fw,s(xi) = (1− α)hi + αV sψ(xi · w) (5.13)

Let (yi)Ni=1 be a vector of values, and let g = (gi)
N
i=1 be any element of the closure of

HullN(V ψ). Define w∗ ∈ Sd1 and sign s∗ ∈ {−1, 1} as the minimizing values of the regret,

w∗, s∗ = argminw∈Sd1 ,s∈{−1,1}∥y − (1− α)h− αV sψw∥2N (5.14)

Then using this w∗, s∗, the regret for fw∗,s∗ has the following relationship with the regret

using h

∥y − (1− α)h− αV s∗ψw∗∥2N − ∥y − g∥2N ≤ (1− α)(∥y − h∥2N − ∥y − g∥2N) + α2Na20V
2.

(5.15)

Proof. Since g lives in the closure of the convex hull of signed neurons scaled by V , for

every ϵ > 0 there exists some finite width neural network with continuous-valued weight

vectors wℓ ∈ Sd1 and outer weights cℓ with
∑

ℓ |cℓ| = 1 such that

g̃(x) = V
∑
ℓ

|cℓ|sign(cℓ)ψ(x · wℓ),
N∑
i=1

(g(xi)− g̃(xi))
2 ≤ ϵ. (5.16)

133

Decompose our regret in the following way,

∥y − (1− α)h− αV s∗ψw∗∥2N − ∥y − g∥2N (5.17)

=∥(1− α)y − (1− α)h+ αy − αV s∗ψw∗∥2N − ∥y − g∥2N (5.18)

=(1− α)2∥y − h∥2N + 2α(1− α)⟨y − h, y − s∗V ψw∗⟩N + α2∥y − s∗V ψw∗∥2N − ∥y − g∥2N .

(5.19)

Then, w∗, s∗ is the minimizer of this expression. In particular, the minimum is less than

any average using any distribution for w, s. Thus use the distribution defined by cℓ, and

this is an upper bound on the expression,

(1− α)2∥y − h∥2N (5.20)

+
∑
ℓ

|cℓ|2α(1− α)⟨y − h, y − sign(cℓ)V ψwℓ⟩N (5.21)

+ α2
∑
ℓ

|cℓ|∥y − sign(cℓ)V ψwℓ∥2N − ∥y − g∥2N . (5.22)

Note by definition, the average of the V sign(cℓ)ψwell using |cℓ| as the distribution is exactly

the definition of g̃. Thus consider expression (5.21),

∑
ℓ

|cℓ|2α(1− α)⟨y − h, y − sign(cℓ)V ψwℓ⟩N = 2α(1− α)⟨y − h, y − g̃ϵ⟩N (5.23)

≤ 2(α)(1− α)
(1
2
∥y − h∥2N +

1

2
∥y − g̃ϵ∥2).

(5.24)

Now consider expression (5.22). Using a bias variance decomposition, this term is like a

134

variance plus a bias term,

α2
∑
ℓ

|cℓ|∥y − sign(cℓ)V ψwℓ∥2N = α2
∑
ℓ

|cℓ|∥sign(cℓ)V ψwℓ − g̃ϵ∥2N + α2∥y − g̃ϵ∥2N

(5.25)

≤ α2Na20V
2 + α2∥y − g̃ϵ∥2N . (5.26)

Thus we have upper bound

[(1− α)2 + α(1− α)]∥y − h∥2N + [α2 + α(1− α)]∥y − g̃ϵ∥2 − ∥y − g∥2N + α2Na20V
2

(5.27)

=(1− α)∥y − h∥2N + α∥y − gϵ∥2N − ∥y − g∥2N + α2Na20V
2 (5.28)

=(1− α)∥y − h∥2N + (α− 1)∥y − g∥2N + α(∥g − gϵ∥2N + 2⟨y − g, g − g⟩N) + α2NV 2

(5.29)

≤(1− α)[∥y − h∥2N − ∥y − g∥2N] + α2Na20V
2 + αϵ+ 4

√
ϵ(max

i≤N
|yi|+ a0V). (5.30)

Taking ϵ→ 0 yields the final result.

5.3 Arbitrary Sequence Regret

Consider some integerM , and let P0 be the uniform prior on Sd1,M×{−1, 1}. That is, each

possible weight vector w ∈ Sd1,M is considered equally likely under the prior, and then the

outer sign of the neuron is considered equally likely to be ±1. Note if we are working

with odd symmetric neurons such as a tanh, we can instead consider P0(s = 1) = 1 and

consider all outer signs as positive.

135

Recall the definition of the residuals at level k of our greedy method,

rn,k = yn − (1− α)f̂n−1,k(xn). (5.31)

Recall also the definition of the posterior and fit at level k,

ℓn,k(w, s) =
1

2

n∑
i=1

(ri,k−1 − αsV ψ(xi · w))2 (5.32)

pn,k(w, s|xn, rnk−1) ∝ p0(w, s)e
−βℓn,k(w,s) (5.33)

f̂n,k(x) = (1− α)f̂n,k−1(x) + αV EPn,k [sψ(x · w)|xn, rnk−1]. (5.34)

Define the conditional density p(y|f̂n,k, x, w, s) as Normal with mean (1 − α)f̂n,k(x) +

αsV ψ(x · w) and variance 1
β

. Then define the posterior predictive density at level k and

index n,

pn,k(y|x, xn, rnk−1) = EPn,k [p(y|f̂n,k−1, x, w, s)|xn, rnk−1]. (5.35)

We then define three notions of regret: square, random, and log. Given a set of (xi)Ni=1 in-

put values, a competitor function g, and a sequence of outputs (yi)Ni=1, define the individual

terms in the regret for each n and k,

Rsquare
n,k =

1

2

[
(yn − f̂n−1,k(xn))

2 − (yn − g(xn))
2
]

(5.36)

Rrand
n,k =

1

2

[
EPn−1,k

[(yn − (1− α)f̂n−1,k−1(xn)− αψ(xn · w))2|xn−1, rn−1
k−1]− (yn − g(xn))

2
]

(5.37)

Rlog
n,k =

1

β

[
log

1

pn−1,k(yn|xn, xn−1, rn−1
k−1)

− log
1

q(yn|xn)

]
(5.38)

136

where

q(y|x) = (
β

2π
)
1
2 e−

β
2
(y−g(x))2 . (5.39)

We note the following relationship between squared norms with y’s and our definition of

recursive residuals,

yn − f̂n−1,k(xn) = yn − (1− α)f̂n−1,k−1(xn)− αV EPn−1,k
[sψ(xn · w)|xn−1, rn−1

k−1]

(5.40)

= rn,k−1 − αV EPn−1,k
[sψ(xn · w)|xn−1, rn−1

k−1] (5.41)

= EPn−1,k
[rn,k−1 − αsV ψ(xn · w)|xn−1, rn−1

k−1]. (5.42)

We then have the following lemma relating the ordering of these various notions of regret.

Lemma 5.3. Assume f̂n,k is bounded in absolute value by a0V for all indexes 0 ≤ n ≤

N, 1 ≤ k ≤ K. Define

λn,k = α|rn,k−1|a0V +
1

2
α2a20V

2 (5.43)

Then we have

Rlog
n,k ≤ Rrand

n,k (5.44)

Rsquare
n,k ≤ Rrand

n,k ≤ Rlog
n,k + 2βλ2n,k. (5.45)

Proof. Rsquare
n,k ≤ Rrand

n,k and Rlog
n,k ≤ Rrand

n,k by Jensen’s inequality. Consider

1

2
[yn − (1− α)f̂n−1,k−1(xn)− αsV ψ(xn · w)]2 =

1

2
[rn,k−1 − αsV ψ(xn · w)]2 (5.46)

as a random variable in w, s where w, s follow the distribution of Pn−1,k(·|xn−1, rn−1
k−1).

137

Then Rrand
n,k is the expected value of this random variable, and Rlog

n,k is −1/β times its cu-

mulant generating function at −β. Isolate the part of the random variable that depends on

w, s,

−αV rn,k−1sψ(xn · w) +
1

2
α2V 2ψ(xi · w)2. (5.47)

Note this object is bounded by,

λn,k = α|rn,k−1|a0V +
1

2
α2a20V

2. (5.48)

The CGF of a bounded random variable matches its mean to within half the square of the

bound, by second order Taylor expansion. Thus we have

Rrand
n,k ≤ Rlog

n,k +
1

2
βλ2n,k. (5.49)

Define the averaged quantities,

R̄square
N,k =

1

N

N∑
n=1

Rsquare
n,k R̄rand

N,k =
1

N

N∑
n=1

Rrand
n,k (5.50)

R̄log
N,k =

1

N

N∑
n=1

Rlog
n,k Λ̄2

N,k =
1

N

N∑
n=1

λ2n,k. (5.51)

Then the averaged quantities follow the same ordering as their individual terms,

R̄square
N,k ≤ R̄rand

N,k ≤ R̄log
N,k + 2βΛ2

N,k. (5.52)

First, we give a lemma showing that for any continuous valued neuron weight in Sd1 ,

there exists a discrete valued neuron weight in Sd1,M that achieves regret of order O(1/M)

138

relative to the continuous vector. This is the analog of our joint approximation lemma,

which showed any finite width neural network with continuous weights has a neural net-

work of width K and discrete weights that can approximate it well. This result is only for

one neuron at a time.

Lemma 5.4 (Greedy Approximation Lemma). Let (xi)Ni=1 be a sequence of values with

xi ∈ [−1, 1]N . Let wcont be any particular continuous weight vector in Sd1 , and s a sign

value in {−1, 1}. Then there exists a choice of discrete weight w∗ ∈ Sd1,M such that for

any sequence (yi)
N
i=1, the regret compared to ψ(·, wcont) is bounded by

N∑
i=1

(yi − αV sψ(xi · w∗))2 − (yi − αV ψ(xi · wcont))2 ≤ a2αV
∥y∥1
M

+ α2V 2(a21 + a0a2)
N

M
.

(5.53)

Proof. As we have done before, given the continuous vector wcont ∈ Sd1 we will define a

distribution over discrete random variables wdisc ∈ Sd1,M using M iid random index selec-

tions. Given a continuous vector wcont of dimension d, we then make a random discrete

vector as follows. Define a d+ 1 coordinate, wd+1 = 1− ∥wcont
1:d

∥1, to have a d+ 1 length

vector which sums to 1. Consider a random index J ∈ {1, . . . d + 1} where J = j with

probability |wcont
j |. Given wcont, this defines a distribution on {1, . . . , d + 1}. Draw M iid

random indices J1, . . . , JM from this distribution and define the counts of each index

mj =
M∑
i=1

1{Ji = j}. (5.54)

We then define the discrete vector wdisc ∈ Sd1,M with coordinate values

wdisc
j = sign(wcont

j)
mj

M
. (5.55)

139

Then consider the expected regret using wdisc drawn from this distribution,

E[∥y − αV sψwdisc∥2N]− ∥y − αV sψwcont∥2N (5.56)

=
N∑
i=1

E[y2i − 2αV syiψ(xi · wdisc) + α2V 2(ψ(xi · wdisc))2]− ∥y − αV sψwcont∥2N (5.57)

Perform a second order Taylor expansion of function in the expectation centered at wcont.

Noting that |ψ(z)| ≤ a0, |ψ(z)′| ≤ a1, |ψ′′(z)| ≤ a2 for all z ∈ [−1, 1], we have the

following upper bound,

y2i − 2αV syiψ(xi · wdisc) + α2V 2(ψ(xi · wdisc))2 (5.58)

≤ (yi − αV ψ(xi · wcont))2 (5.59)

− 2αsV yiψ
′(xi · wcont)(xi · wdisc − xi · wcont) + a2αV |yi|(xi · wcont)(xi · wdisc − xi · wcont)2

(5.60)

+ 2α2V 2ψ(xi · wcont)ψ′(xi · wcont)(xi · wdisc − xi · wcont) (5.61)

+ α2V 2(a21 + a0a2)(xi · wdisc − xi · wcont)2. (5.62)

Then note that E[wdisc|wcont] = wcont so all first order terms are mean 0, and all second

order terms will be variances which will be of the order 1/M since they are the variance

of a sum of M iid random variables divided by M . This gives us the upper bound,

E[∥y − αV sψwdisc∥2N]− ∥y − αV sψwcont∥2N (5.63)

≤ a2αV
N∑
i=1

|yi|Var(xi · wdisc|wcont) + α2V 2(a21 + a0a2)
N∑
i=1

Var(xi · wdisc|wcont) (5.64)

≤ a2αV ∥y∥1
1

M
+ α2V 2(a21 + a0a2)

N

M
. (5.65)

140

Thus, we have established that: greedy optimization creates a certain recursion for

regret (Lemma 5.2), square regret can be closely related to log regret (Lemma 5.3), and

any continuous neuron has a discrete neuron that has small regret relative to that neuron

(Lemma 5.4). Combining these results, we show that square regret using the greedy Bayes

estimators instead of optimization establishes a similar recursive relationship.

Theorem 5.1. Let (xi)Ni=1 be a sequence of input values with all xi ∈ [−1, 1]d. Let g be a

competitor function which is an element of HullN(VΨ), the closure of the convex hull of

signed neurons scaled by V . Let P0 be the uniform prior on (Sd1,M) × {−1, 1}. For any

sequence of values (yi)Ni=1, define the value

CN =
N

max
n=1

|yn|+ a0V. (5.66)

Define the term,

τ =
1

2
α2a20V

2 +
β

2
α2a20V

2(CN +
1

2
αa0V)2 (5.67)

+
M log(2d+ 1)

βN
+

1

2

1

M
a2αV CN +

1

2
α2V 2(a21 + a0a2)

1

M
. (5.68)

Then consider the average square regret of our sequence of estimators as defined in equa-

tions (5.36), (5.50). The square regrets at level k satisfy the recursive relationship,

R̄square
N,k ≤ (1− α)R̄square

N,k−1 + τ. (5.69)

Proof. Consider first the average square regret at level k,

R̄square
N,k =

1

N

N∑
n=1

[
1

2
(yn − (1− α)f̂n−1,k−1(xn)− αV EPn−1,k

[sψ(xn · w)])2 −
1

2
(yn − g(xn))

2].

(5.70)

141

Recall the definition of the rn,k−1 residuals,

rn,k−1 = yn − f̂n−1,k−1(xn). (5.71)

For notational convenience we can write

R̄square
N,k =

1

N

N∑
n=1

[
1

2
(rn,k−1 − αV EPn−1,k

[sψ(xn · w)])2 −
1

2
(yn − g(xn))

2]. (5.72)

By Lemma 5.3, square regret can be upper bound by log regret plus an additional term

R̄square
N,k ≤ 1

βN

N∑
n=1

[
− log

(∫
β√
2π
e−

β
2
(rn,k−1−αsV ψ(xn·w))2pn−1,k(w, s|xn−1, rn−1

k−1)η(dw, ds)
)]

(5.73)

+
β

2N

N∑
n=1

(α|rn,k−1|a0V +
1

2
α2a20V

2)2 (5.74)

− 1

2

1

N
∥y − g∥2N +

1

2β
log(

β

2π
). (5.75)

Define the Bayes factors

Zn,k =
(β

2π

)n
2

∫
e−

β
2

∑n
i=1(ri,k−1−αsV ψ(xi·w))2P0(dw, ds). (5.76)

Then the predictive densities pn−1,k(yn|xn, xn−1, rn−1
k−1) are equal to the ratio of Bayes fac-

tors

pn−1,k(yn|xn, xn−1, rn−1
k−1) =

Zn,k
Zn−1,k

. (5.77)

Via a telescoping sum of log factors, we have the following upper bound on the square

142

regret using only the final Bayes factor ZN,K inside the log,

R̄square
N,k ≤ 1

βN

[
− log

(∫
e−

β
2

∑N
n=1(rn,k−1−αsV ψ(xn·w))2P0(dw, ds)

)]
(5.78)

+
β

2N

N∑
n=1

(α|rn,k−1|a0V +
1

2
α2a20V

2)2 − 1

2

1

N
∥y − g∥2N . (5.79)

Let s∗, w∗,cont be the sign continuous weight vector that would minimize the square loss

with the rn,k−1 residuals,

s∗, w∗,cont = argminw∈Sd1 ,s∈{−1,1}

N∑
n=1

(rn,k−1 − αsV ψ(xn · w))2. (5.80)

Add and subtract the square distance from this residual inside the exponent of the integral,

so we have

1

βN

[
− log

(∫
e−

β
2

∑N
n=1(rn,k−1−αsV ψ(xn·w))2+β

2

∑N
n=1(rn,k−1−αsV ψ(xn·w∗,cont))2P0(dw, ds)

)]
(5.81)

+
β

2N

N∑
n=1

(α|rn,k−1|a0V +
1

2
α2a20V

2)2 (5.82)

+
1

2

1

N
∥y − (1− α)f̂n−1,k−1 − αsV ψw∗,cont∥2N − 1

2

1

N
∥y − g∥2N . (5.83)

By Lemma 5.4, for any continuous weight vector, there exists at least one discrete weight

vector that has a certain bounded regret compared to the continuous weight vector. There

are less than (2d + 1)M points in the discrete state space, thus we have the bound on the

143

CGF term of the form

1

βN

[
− log

(∫
e−

β
2

∑N
n=1(rn,k−1−αsV ψ(xn·w))2+β

2

∑N
n=1(rn,k−1−αsV ψ(xn·w∗,cont))2P0(dw, ds)

)]
(5.84)

≤ M log(2d+ 1)

βN
+

1

2
a2αV

1

N

N∑
n=1

|rn,k−1|
1

M
+

1

2
α2V 2(a21 + a0a2)

1

M
. (5.85)

By Lemma 5.2, the regret using the the optimal neuron as a fixed relationship to he regret

using the previous fit,

1

2

1

N
∥y − (1− α)f̂·,k−1 − αsV ψw∗,cont∥2N − 1

2

1

N
∥y − g∥2N (5.86)

≤(1− α)
1

2
(
1

N
∥(∥y − f̂·,k−1∥2N − 1

N
∥y − g∥2N) +

1

2
α2a20V

2. (5.87)

The conclusion of these two results is that log regret using our Bayesian posterior density

is nearly the same as if we had been able to do greedy optimization. We pay the price

of some additional terms which will appear in the object we call τ . Putting these results

together gives the recursive relationship for square regret,

R̄square
N,k ≤ (1− α)(R̄square

N,k−1) +
1

2
α2a20V

2 (5.88)

+
β

2N

N∑
n=1

(α|rn,k−1|a0V +
1

2
α2a20V

2)2 (5.89)

+
M log(2d+ 1)

βN
+

1

2

1

M
a2αV

1

N

N∑
n=1

|rn,k−1|+
1

2
α2V 2(a21 + a0a2)

1

M
. (5.90)

The maximum the residual can be is controlled by its bounded inputs,

|rn,k−1| ≤ CN . (5.91)

144

This yields upper bound

R̄square
N,k ≤ (1− α)(R̄square

N,k−1) +
1

2
α2a20V

2 (5.92)

+
β

2
(αCNa0V +

1

2
α2a20V

2)2 (5.93)

+
M log(2d+ 1)

βN
+

1

2

1

M
a2αV CN +

1

2
α2V 2(a21 + a0a2)

1

M
. (5.94)

The terms aside from (1− α)R̄sqaure
N,k−1 are denoted as τ in the theorem statement.

Thus, we have established the kind of recursive relationship we would like to arise

for our greedy Bayes estimator. Note this relationship is easy to establish for greedy

optimization, in fact Lemma 5.2 essentially does this for greedy optimization. By keeping

careful track of how cumulant generating functions are close to their means (with certain

controlled difference terms), we can relate the posterior means of our estimator to this

recursion we would get using greedy optimization, with additional terms absorbed by the

τ we have defined.

Thus, we must consider the τ that appears in our recursive result, and determine the

correct choices of α, β,M,K,N that can give good risk control. We will see the following

choices:

K =
(N + 1

log(2d+ 1)

) 1
3 log

((N + 1

log(2d+ 1)

) 1
3

)
M =

(N + 1

log(2d+ 1)

) 1
3 (5.95)

α =
log(K)

K
β = 1 (5.96)

gives a bound on average square regret of the order O([(log d)/N]1/3).

Theorem 5.2. Let (xi)Ni=1 be a sequence of input values with all xi ∈ [−1, 1]d. Let g be a

target function and let h be any element of HullN(VΨ), the closure of the convex hull of

signed neurons scaled by V . Let P0 be the uniform prior on (Sd1,M) × {−1, 1}. For any

145

sequence of values (yi)Ni=1, define the terms

ϵn = yn − g(xn) ϵ̃n = yn − h(xn). (5.97)

Then the average square regret for the y sequence using g as the competitor at level K

can be bound as

R̄square
N,K ≤ (1− α)KR̄square

N,0 +
1

2
αa20V

2 +
β

2
αa20V

2(CN +
1

2
αa0V)2 (5.98)

+
M log(2d+ 1)

αβN
+

1

2

1

M
a2V CN +

1

2
αV 2(a21 + a0a2)

1

M
(5.99)

+
1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (5.100)

In particular, assume

log
((N + 1

log(2d+ 1)

) 1
3
)
≥ 1, (5.101)

which is a mild assumption about having a certain amount of data. With the choice of

parameters

K =
(N + 1

log(2d+ 1)

) 1
3 log

((N + 1

log(2d+ 1)

) 1
3

)
M =

(N + 1

log(2d+ 1)

) 1
3 (5.102)

α =
log(K)

K
β = 1 (5.103)

146

We achieve a bound of the form

R̄square
N,K ≤

(log(2d+ 1)

N

) 1
3 (R̄square

N,0 + 1.4
1

2
a20V

2 + 1 +
1

2
a2V CN) (5.104)

+ 1.4
(log(2d+ 1)

N

) 1
3
1

2
a20V

2
(
CN + 1.4

(log(2d+ 1)

N

) 1
3
1

2
αa0V

)2 (5.105)

+ 1.4
(log(2d+ 1)

N

) 2
3
1

2
V 2(a21 + a0a2) (5.106)

+
1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (5.107)

If we consider a0, a1, a2, V as fixed constants this is of the order

R̄square
N,K = O

((log(d)
N

) 1
3 (

N
max
n=1

|yn|)2
)
+

1

2

1

N

N∑
n=1

(ϵ̃2n − ϵ2n). (5.108)

Proof. Theorem 1 requires the competitor function to be an element of the closure of the

convex Hull, which we have not assumed g is. However, for regret relative to g it is simple

to add and subtract 1
2
(yn − h(xn))

2 to instead consider the regret of our fits relative to h

and then the regret of h relative to g (which is the average of the 1/2[(ϵ′n)
2 − ϵ2n]).

R̄square
N,k =

1

N

N∑
n=1

[
1

2
(yn − f̂n−1,k(xn))

2 − 1

2
(yn − g(xn))

2] (5.109)

=
1

N

N∑
n=1

[
1

2
(yn − f̂n−1,k(xn))

2 − 1

2
(yn − h(xn))

2] (5.110)

+
1

N

N∑
n=1

[
1

2
(yn − h(xn))

2 − 1

2
(yn − g(xn))

2] (5.111)

=
1

N

N∑
n=1

[
1

2
(yn − f̂n−1,k(xn))

2 − 1

2
(yn − h(xn))

2] +
1

N

N∑
n=1

[
1

2
ϵ̃2n −

1

2
ϵ2n].

(5.112)

So we can can consider the regret of our fits relative to h instead and simply let the dif-

ference between ϵ̃n and ϵn be as it is. In particular, h can be chosen as the projection of g

147

into HullN(V ψ). Nonetheless, with h now acting as our competitor function we can ap-

ply the result of Theorem 5.1 and get the recursive relationship. Then with this recursion

established, we can apply Lemma 5.1 to have a bound on the final regret,

R̄square
N,K ≤ (1− α)KR̄square

N,0 +
τ

α
. (5.113)

With τ as defined in equation (5.68). Divide each term in (5.68) by out α. Our first

consideration is the term (1− α)K . If we set α = 1
K

, this would converge to e−1 for large

K, which is a constant limit not one decaying in K. However, if we set α = logK
K

, we

have the relationship

(1− log(K)

K
)K ≤ 1

K
. (5.114)

This then gives a 1/K control on the term with R̄square
N,0 .

Now let

K =
((N + 1)

log(2d+ 1)

) 1
3

(log ((N+1)
log(2d+1)

)
3

)
M =

((N + 1)

log(2d+ 1)

) 1
3 . (5.115)

Assume that

log
((N+1)
log(2d+1)

)
3

≥ 1. (5.116)

Note that for x > 1 we have

0 ≤ log(x)

x
≤ 0.4. (5.117)

148

So we have the bound

log(K)

K
=

(log(2d+ 1)

N + 1

) 1
3 (1 +

log
(

log
(

(N+1)
log(2d+1)

)
3

)
log

(
(N+1)

log(2d+1)

)
3

) (5.118)

Which implies

(log(2d+ 1)

N + 1

) 1
3 ≤ log(K)

K
≤ 1.4

(log(2d+ 1)

N + 1

) 1
3 . (5.119)

Inputting these values yields the bound.

5.4 IID Risk Control for Greedy Bayes

We now consider risk control for iid sequences. Risk can be expressed as an expected

regret, thus the proof of this result follows by redoing the proof of the arbitrary regret

theorem inside of an expectation using the data distribution. We can then take advantage

of bounding EP
XN+1,Y N+1

[|rn,k−1|] in an average sense, instead of bounding |rn,k−1| in

a worst case sense. If E[Yi|Xi] = g(Xi) with absolute value of g bounded by b, and

Var(Yi|Xi) ≤ σ2, we can replace each instance of CN = (maxNn=1 |yn|+ a0V) in equation

5.98 with
√
σ2 + (b+ a0V)2 instead.

Theorem 5.3. Let g be a target function with absolute value bounded by b and let g̃ be

its L2(PX) projection into the closure of the convex hull of signed neurons scaled by V .

Let P0 be the uniform prior on (Sd1,M) × {−1, 1}. Let (Xi, Yi)
N
i=1 be training data iid

with conditional mean g(Xi) and conditional variance σ2
Xi

with variance bound σ2
x ≤ σ2.

149

Assume the data distribution PX has support in [−1, 1]d. Define the value

τ ′ =
1

2
α2a20V

2 +
β

2
(α

√
σ2 + (b+ a0V)2a0V +

1

2
α2a20V

2)2] +
M log(2d+ 1)

β(N + 1)
(5.120)

+
1

2

1

M
a2αV

√
σ2 + (b+ a0V)2 +

1

2
α2V 2(a21 + a0a2)

1

M
. (5.121)

Then the mean squared statistical risk of the Cesàro average of the level K estimators ĝ is

upper bounded by

E[
1

2
(g(X)− ĝ(X))2] ≤ E[

1

2
(g̃(X)− g(X))2] + (1− α)K(σ2 + (b+ a0V)2) +

τ ′

α
.

(5.122)

In particular, assume

log
((N + 1

log(2d+ 1)

) 1
3
)
≥ 1, (5.123)

which is a mild assumption about having a certain amount of data. With the choice of

parameters

K =
(N + 1

log(2d+ 1)

) 1
3 log

((N + 1

log(2d+ 1)

) 1
3

)
M =

(N + 1

log(2d+ 1)

) 1
3 (5.124)

α =
log(K)

K
β = 1 (5.125)

150

we have the bound

E[
1

2
(g − ĝ)2] ≤ E[

1

2
(g̃(X)− g(X))2] (5.126)

+
(log(2d+ 1)

N + 1

) 1
3

[
1.4

1

2
a20V

2 + 1 + σ2 + (b+ a0V)2 +
1

2
a2V

√
σ2 + (b+ a0V)2)

]
(5.127)

+ 1.4
(log(2d+ 1)

N + 1

) 1
3
1

2
a20V

2
(√

σ2 + (b+ a0V)2 + 1.4
(log(2d+ 1)

N + 1

) 1
3
1

2
a0V

)2 (5.128)

+ 1.4
(log(2d+ 1)

N + 1

) 2
3
1

2
V 2(a21 + a0a2). (5.129)

If one considers σ, b, V, a0, a1, a2 as fixed values not growing in N or d, this bound is of

the order,

E[
1

2
(g − ĝ)2] = E[

1

2
(g̃(X)− g(X))2] +O(

(log(d)
N

) 1
3). (5.130)

Proof. This proof follows much of the same steps as the square regret proof for arbitrary

sequences Theorem 5.2. However, in the arbitrary sequence proof we had to settle for

an upper bound on the residuals determined by the maximum absolute value of yn in our

training set. We do not want to have such a value appear in this proof, as for unbounded

distributions this will be growing with N and affect our rates. Instead, we take advantage

of our objects now existing inside an expectation, thus we can instead take the expectation

of |rn,k−1| with respect to the data distribution, which will be controlled by the bound the

absolute value of the mean function g and the standard deviation σ. Thus we can allow

the the yn to have very large values, and it is only the bound on the mean function and the

variance which will determine the constants of our risk.

We will now set up a recursion for the expected log regret at a level k and show

E[R̄square
N,k] ≤ (1− α)E[R̄square

N,k−1] + τ ′. (5.131)

151

First, we show that the square risk with the Cesàro average of the level K estimators

is equal to an expected regret at level K. Let (Xi, Yi)
N
i=1 be the training data iid from the

data distribution PX,Y . Let (X, Y) = (XN+1, YN+1) be a new input and response pair

independent from the data distribution. Then our square risk is an expectation over both

the training data and new data pair,

1

2
EP

XN+1,Y N+1
[(g(X)− ĝ(X))2] ≤ 1

2

1

N + 1

N∑
n=0

EP
XN+1,Y N+1

[(g(X)− f̂n,K(X))2]

(5.132)

=
1

2
EP

XN+1,Y N+1
[
N∑
n=0

(g(Xn+1)− f̂n,K(Xn+1))
2

N + 1
] (5.133)

=
1

2
EP

XN+1,Y N+1
[
N∑
n=0

(Yn+1 − f̂n,K(Xn+1))
2 − (Yn+1 − g(Xn+1))

2

N + 1
], (5.134)

where we have added in the Yn+1 using the fact that Yn+1 − g(Xn+1) is mean 0 under the

data distribution, and conditionally independent of f̂n,K(Xn+1) since f̂n,k is only trained

on data up to index n in the training data. This object is now exactly an expected square

regret at level K. Thus, we consider the recursion of lower k levels to provide a bound on

the expected regret at level K.

Consider the expected regret using the level k estimators,

1

2
EP

XN+1,Y N+1
[
N∑
n=0

(Yn+1 − f̂n,k(Xn+1))
2 − (Yn+1 − g(Xn+1))

2

N + 1
]. (5.135)

g is our target function, which is not assumed to live in the L2(PX) closure of the convex

hull of signed neurons scaled by V . Thus, let g̃ be its L2(PX) projection into Hull(V ψ).

g̃ is not per say a specific finite width neural network, but a limit thereof. Let g̃ϵ be a

specific finite width neural network that is ϵ close to g̃ in L2(PX) distance. Note that

for any sequence (xi)
N+1
i=1 , that (g̃ϵ(xi))N+1

i=1 is then an element of the Euclidean closure

HullN+1(V ψ), which is a condition needed in our previous approximation lemmas. This

152

is all to say, add and subtract 1
2
∥y − g̃ϵ∥2N , and the recursion we really want to study is the

regret with respect to g̃ϵ at different levels k, plus the regret of g̃ϵ relative to g,

1

2
EP

XN+1,Y N+1
[
N∑
n=0

(Yn+1 − f̂n,k(Xn+1))
2 − (Yn+1 − g̃ϵ(Xn+1))

2

N + 1
] (5.136)

+
1

2
EP

XN+1,Y N+1
[
N∑
n=0

(Yn+1 − g̃ϵ(Xn+1))
2 − (Yn+1 − g(Xn+1))

2

N + 1
] (5.137)

Consider then the object inside the expectation of equation (5.136). This is exactly

a square regret with respect to an element of HullN(V ψ). Thus the proof technique of

Theorem 5.1 to establish a recursion will apply. Follow that proof the same way up to

equation (5.90). Picking up at equation (5.90) we have the result (note these regrets are

with respect to g̃ϵ as the competitor)

EP
XN+1 ,Y N+1 [R̄square

N,k] ≤ (1− α)EP
XN+1,Y N+1

[R̄square
N,k−1] +

1

2
α2a20V

2 (5.138)

+
β

2(N + 1)

N+1∑
n=1

EP
XN+1,Y N+1

[(α|rn,k−1|a0V +
1

2
α2a20V

2)2]

(5.139)

+
M log(2d+ 1)

β(N + 1)
+

1

2

1

M
a2αV

1

N + 1

N+1∑
n=1

EP
XN+1,Y N+1

[|rn,k−1|]

(5.140)

+
1

2
α2V 2(a21 + a0a2)

1

M
. (5.141)

In the arbitrary sequence regret proof, we had upper bounded the residuals terms using

equation (5.91). Now we can instead use their expectation and bound this instead. Note yn

153

is mean g(xn) and yn|xn has variance less than σ2. Thus via a bias variance decomposition,

EP
XN+1,Y N+1

[(yn − f̂n−1,k−1(xn))
2] = σ2 + (g(xn)− EP

XN+1,Y N+1
[f̂n−1,k−1(xn)])

2

(5.142)

≤ σ2 + (b+ a0V)2. (5.143)

In a similar way the expected absolute value is less than
√
σ2 + (b+ a0V)2 via a Jensen’s

inequality. Thus, we can apply this bound on the expectations and we have overall bound

EP
XN+1,Y N+1

[R̄square
N,k] ≤ (1− α)EP

XN+1,Y N+1
[R̄square

N,k−1)] +
1

2
α2a20V

2 (5.144)

+
β

2
(α

√
σ2 + (b+ a0V)2a0V +

1

2
α2a20V

2)2 (5.145)

+
M log(2d+ 1)

β(N + 1)
+

1

2

1

M
a2αV

√
σ2 + (b+ a0V)2 (5.146)

+
1

2
α2V 2(a21 + a0a2)

1

M
(5.147)

which notably, does not depend on the maximum value of the y′s but only on σ and b. We

have now established a recursive relationship of the form

EP
XN+1,Y N+1

[R̄square
N,k] ≤ (1− α)EP

XN+1,Y N+1
[R̄square

N,k−1)] + τ ′. (5.148)

Applying Lemma 5.1, this gives a bound on the level K regret

EP
XN+1,Y N+1

[R̄square
N,k] ≤ (1− α)KEP

XN+1,Y N+1
[R̄square

N,0] +
τ ′

α
(5.149)

≤ (1− α)K(σ2 + (b+ a0V)2) +
τ ′

α
. (5.150)

As before, set α = logK
K

so we have

(1− α)K ≤ 1

K
. (5.151)

154

This gives control on the final expected regret

EP
XN+1,Y N+1

[R̄square
N,k] ≤ 1

K
(σ2 + (b+ a0V)2) +

1

2
αa20V

2 (5.152)

+
β

2
αa20V

2(
√
σ2 + (b+ a0V)2 +

1

2
αa0V)2 (5.153)

+
M log(2d+ 1)

αβ(N + 1)
+

1

2

1

M
a2V

√
σ2 + (b+ a0V)2 (5.154)

+
1

2
αV 2(a21 + a0a2)

1

M
. (5.155)

Now let

K =
((N + 1)

log(2d+ 1)

) 1
3

(log ((N+1)
log(2d+1)

)
3

)
M =

((N + 1)

log(2d+ 1)

) 1
3 . (5.156)

Assume that

log
((N+1)
log(2d+1)

)
3

≥ 1. (5.157)

Note that for x > 1 we have

0 ≤ log(x)

x
≤ 0.4. (5.158)

So we have the bound

log(K)

K
=

(log(2d+ 1)

N + 1

) 1
3 (1 +

log
(

log
(

(N+1)
log(2d+1)

)
3

)
log

(
(N+1)

log(2d+1)

)
3

) (5.159)

Which implies

(log(2d+ 1)

N + 1

) 1
3 ≤ log(K)

K
≤ 1.4

(log(2d+ 1)

N + 1

) 1
3 . (5.160)

155

Inputting these values yields the bound

EP
XN+1,Y N+1

[R̄square
N,k] ≤

(log(2d+ 1)

N + 1

) 1
3 (σ2 + (b+ a0V)2) + 1.4

(log(2d+ 1)

N + 1

) 1
3
1

2
a20V

2

(5.161)

+ 1.4
(log(2d+ 1)

N + 1

) 1
3
β

2
a20V

2(
√
σ2 + (b+ a0V)2 + 1.4

(log(2d+ 1)

N + 1

) 1
3
1

2
a0V)2 (5.162)

+
(log(2d+ 1))

1
3

β(N + 1)
1
3

+
(log(2d+ 1)

N + 1

) 1
3
1

2
a2V

√
σ2 + (b+ a0V)2 (5.163)

+ 1.4
(log(2d+ 1)

N + 1

) 2
3
1

2
V 2(a21 + a0a2). (5.164)

β only appears in two of these terms. We can choose β =
√

1
σ2+(b+a0V)2

to change the

constants of these two terms, but this will not effect other terms or the order of dependence

in N . So for simplicity, let β = 1.

This provides the bound on term (5.136), which is the regret with respect to g̃ϵ. For

equation (5.137), it can be shown to be close to 1
2
EPX [(g̃(X)− g(X))2] +O(

√
ϵ). Taking

epsilon to 0 removes the extra terms.

If we consider σ, b, V, a0, a1, a2 as fixed and not growing in N or d, then this bound is

O([(log d)/N]1/3).

156

Chapter 6

Additional Content and Discussion

6.1 Combining Continuous and Discrete Results

We note that unfortunately, our results showing when a log-concave coupling occurs and

our results providing risk control are currently not compatible. For our log-concave cou-

pling results, we use a continuous prior which is uniform over the continuous ℓ1 ball Sd1 .

For our risk control results, we use a discrete prior with grid size 1/M for some integerM ,

and let it be uniform over the intersection of the continuous ball with the grid of intervals

1
M

, which we call Sd1,M .

It seems promising that one can combine these results by using a large M and showing

that the behavior of the discrete grid prior is very similar to the continuous prior. From our

log-concave coupling results, we consider K as some fractional power of Np, 0 < p < 1,

and dimensions d > N q, for a power q > 1. From our risk control results, we have bound

on the risk of the order (ignoring constants),

MK log(d)

βN
+

1

M
+

1

K
+ β. (6.1)

Thus, it is clear MK ≤ βN to have any kind of risk control that is decaying in N . The

157

optimal choice is to haveM = K = 1
β
= (N/(log d))

1
4 , but this is not the only choice. We

may want to work with larger M in order to make our discrete grid prior behave more like

the continuous prior. Thus, we can scale M up to (N/(log d))p for p < 1 and still get a

(notable worse than 1/4) decay rate of [(log d)/N]
(1−p)

3 for our overall error rate. p = 1/4

is the solution to p = (1− p)/3 when all the terms in the risk bound are of the same order.

Using a larger p will give worse risk bounds.

Notably this forces M < N as a hard upper bound to get any form of risk control,

and this makes it difficult to show the discrete prior and continuous prior have comparable

performance.

To connect the discrete and continuous prior, note that both can be considered as

marginal distributions of the same joint distribution. This allows us to think of wdisc =

(wdisc
k)Kk=1 and wcont = (wcont

k)Kk=1 as jointly distributed variables. Then any expectation

using either the continuous or discrete prior, is really an expectation using the joint distri-

bution with the other variable integrated out.

Consider P0 as a joint distribution on (Sd1)
K × (Sd1,M)K , with the continuous random

vector wcont ∈ (Sd1)
K and the discrete random vector wdisc ∈ (Sd1,M)K . Consider the

marginal distribution on wcont as treating each wcont
k vector as independent uniform on Sd1 .

Consider an additional coordinate for each wcont
k vector to track its ℓ1 distance from 1,

wcont
k,d+1 = 1−

∑d
j=1 |wcont

k,j |.

Then define the conditional distribution on wdisc
k |wcont

k as follows. Force the signs of

the coordinates to stay the same, sign(wdisc
k,j) = sign(wcont

k,j), and have the absolute values

be distributed as 1/M times a Multinomial(M, |wcont
k,1 |, . . . , |wcont

k,d+1|) distribution. That is,

the conditional probability mass function of the absolute values of the discrete vector can

be written as

p0(|wdisc
k |

∣∣ |wcont
k |) = M !∏d+1

j=1(M |wdisc
k,j |)!

d+1∏
j=1

|wcont
k,j |

M |wdisc
k,j |. (6.2)

158

Note the discrete vector’s coordinates themselves are whole number multiples of 1/M ,

thus M times the discrete vector coordinates are whole numbers between 0 and M. There

is also a wdisc
k,d+1 coordinate in this construction which is 1 minus the sum of the other

coordinates. Then the overall joint distribution P0 has a density (with respect to the product

of Lebesgue measure on (Sd1)
K and counting measure on (Sd1,M)K) of the form

p0(w
cont, wdisc) =

K∏
k=1

p0(w
cont
k)p0(w

disc
k |wcont

k) (6.3)

=
K∏
k=1

UniformSd1
(wcont

k)MultinomialM,|wcont
k |(M |wdisc

k |)
d+1∏
j=1

1{sign(wcont
k,j) = sign(wdisc

k,j)}.

(6.4)

This results in the marginal distribution for wdisc to treat each wdisc
k as uniform on Sd1,M .

This is a special case of the Dirichlet-Multinomial distribution using the all 1’s vector in

the parameter vector of the Dirichlet distribution [54, Chapter 6].

Note than than E[wdisc
k |wcont

k] = wcont
k . Furthermore, wdisc

k |wcont
k can be realized as an

average of M iid random variables, so its variance will be like 1
M

.

Letwcont
k,j have sign sk,j . Then let ej be the vector in Rd+1 with a 1 in the j coordinate and

0 else. Let Zt, t ∈ {1, · · · ,M} be a random variable where Zt = sk,jej with probability

|wcont
k,j |. Then we have

wdisc
k =

M∑
t=1

1

M
Zt. (6.5)

The Zt are then iid random index selections, similar to how a Binomial is constructed by

a sum of Bernoulli random variables. This is the Multinomial analog. Then for any vector

159

x with ∥x|∥∞ ≤ 1, we have

Var(x · wdisc
k |wcont

k) =
M∑
t=1

1

M2
Var(x · Zt|wcont

k) ≤ 1

M
. (6.6)

So thewdisc
k vectors are centered at the continuous ones, and have low variance around their

mean. One would hope to use these results to relate the discrete and continuous variables.

Our primary object for risk control is the cumulant generating function under the prior

of the square loss used in the index of resolvability. That is, in the study of log regret we

have the object

− logEP0 [e
−β

2

∑N+1
i=1 (yi−fwdisc (xi))

2
]

β(N + 1)
. (6.7)

When the variable in the exponent is wdisc, we are able to upper bound this object using

the index of resolvability. Really, with the E[Yi|Xi] = g(Xi) and Xi being iid from a

data distribution PX , it is actually sufficient to have risk control if we can upper bound the

object

EP
XN+1

[
− logEP0 [e

−β
2

∑N+1
i=1 (g(Xi)−fwdisc (xi))

2
]

β(N + 1)
]. (6.8)

For the discrete prior with |g| ≤ b, we can upper bound this object as

MK log(2d+ 1)

β(N + 1)
+
a20V

2

2K
+

(V (a0V + b)a2 + V 2a21)

2M
. (6.9)

To get risk control for the continuous prior, the object we must understand is the same

expression if we use wcont in place of wdisc,

EP
XN+1

[
− logEP0 [e

−β
2

∑N+1
i=1 (g(Xi)−fwcont (xi))

2
]

β(N + 1)
]. (6.10)

160

We do note the following result relating the continuous object to the discrete object,

Lemma 6.1. Using the joint distribution defined above, the cumulant generating function

using the continuous vector is less than twice the cumulant generating function using the

discrete vector plus an additional term,

− logEP0 [e
−β

2
∥g−fwcont∥2N+1] (6.11)

≤ 2
(
− logEP0 [e

−β
2
∥g−f

wdisc∥2N+1]
)
+ logEP0 [e

−β
2
∥g−f

wdisc∥2N+1+
β
2
∥g−fwcont∥2N+1]. (6.12)

Proof. We show that (6.11) minus (6.12) is less than 0. Collecting all log terms under one

expression, (6.11) minus (6.12) is written as

− log
(EP0 [e

−β
2
∥g−fwcont∥2N+1]EP0 [e

−β
2
∥g−f

wdisc∥2N+1+
β
2
∥g−fwcont∥2N+1](

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
)2

)
. (6.13)

Note the square in the denominator is due to the factor of 2 in (6.12). Distribute one of

these factors in the denominator to each expectation in the numerator and separate into

two log expressions,

− logEP0 [
e−

β
2
∥g−fwcont∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
]− logEP0 [

e−
β
2
∥g−f

wdisc∥2N+1+
β
2
∥g−fwcont∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
]. (6.14)

We wish to consider the expectation in the denominators as the normalizing constant of a

density. In the first expression, add and subtract β
2
∥g − fwdisc∥2N+1 in the exponent. Then

treat each term as an expectation using a properly normalized density,

− log

∫
e−

β
2
∥g−f

wdisc∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
EP0 [e

−β
2
∥g−fwcont∥2N+1+

β
2
∥g−f

wdisc∥2N+1|wdisc]P0(dw
disc)

(6.15)

− log

∫
e−

β
2
∥g−f

wdisc∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
EP0 [e

β
2
∥g−fwcont∥2N+1|wdisc]P0(dw

disc). (6.16)

161

Apply Jensen’s inequality on each term twice to bring the negative log into the inner most

expectation. This will bring the terms in the exponent down with a negative sign, so we

have upper bound

∫
e−

β
2
∥g−f

wdisc∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
EP0 [

β

2
∥g − fwcont∥2N+1 −

β

2
∥g − fwdisc∥2N+1|wdisc]P0(dw

disc)

(6.17)

+

∫
e−

β
2
∥g−f

wdisc∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
EP0 [−

β

2
∥g − fwcont∥2N+1|wdisc]P0(dw

disc). (6.18)

These expectations are then with respect to the same distribution, so we can collect into a

common integral. The norms with fwcont are of opposite sign and cancel, while the norm

with fwdisc remains with a negative sign. Thus we have,

−β
2

∫
e−

β
2
∥g−f

wdisc∥2N+1

EP0 [e
−β

2
∥g−f

wdisc∥2N+1]
∥g − fwdisc∥2N+1P0(dw

disc) ≤ 0. (6.19)

Since the loss function is always non-negative, this expectation is always positive, and the

negative in front makes it less than or equal to 0.

Thus the object to understand is this discrete-continuous error term, and its expectation

taken over the data distribution

EP
XN+1

[
logEP0 [EP0 [e

−β
2
∥g−f

wdisc∥2N+1+
β
2
∥g−fwcont∥2N+1 |wcont]]

β(N + 1)
]. (6.20)

This is the “additional” square risk our continuous prior will pay on top of the risk control

we already proved for the discrete prior. Now, one can show for the objects in the exponent,

EP0 [−
β

2
∥g − fwdisc∥2N+1 +

β

2
∥g − fwcont∥2N+1|wcont] = O(

β(N + 1)

M
) (6.21)

Var[−β
2
∥g − fwdisc∥2N+1 +

β

2
∥g − fwcont∥2N+1|wcont] = O((

β(N + 1)

M
)2) (6.22)

162

Thus one could conjecture under a Bernstein inequality,

EP
XN+1

[
logEP0 [EP0 [e

−β
2
∥g−f

wdisc∥2N+1+
β
2
∥g−fwcont∥2N+1|wcont]]

β(N + 1)
] = O(

1

M
+
β(N + 1)

M2
).

(6.23)

Then our risk control for the continuous prior would be of the order (ignoring constants)

MK log(d)

β(N + 1)
+

1

M
+

1

K
+ β +

β(N + 1)

M2
. (6.24)

Setting

M = (
N + 1

log(d)
)
1
2 (6.25)

β = (
log(d)

(N + 1)
)
1
6 (6.26)

K = (
N + 1

log(d)
)
1
6 (6.27)

Gives risk control of the order O([log(d)]
7
6

N
1
6

). Thus we could recover risk control for the

continuous prior, of a lower order than 1/4.

However, Bernstein’s inequality is about sub-exponential random variables, and with

βN > M as we need for discrete risk control, the scaling of our random variable puts us

outside the range where these results apply. The best bounds were are able to prove are

O(1), but we need a bound of the form O(1
Mp +

β(N+1)
Mq) for any p > 0, q > 0 to get some

form of risk control for the continuous prior.

It remains an open problem to try and connect the continuous risk control to the discrete

risk control, and future work hopes to bridge this gap.

163

6.2 Optimization and Infinite Width Limits

While in this work we focus on a Bayesian method to train neural networks with MCMC

as our primary algorithm, there has been much research to understand theoretically the

optimization of neural networks via gradient based methods [15, 58, 24, 33, 45]. Opti-

mization has proven empirically successful for highly over-parameterized networks with

small initial scaling of parameters. Such networks quickly converge under gradient descent

to interpolating (0 training loss) solutions, so it is important to understand if such networks

are overfit and generalize poorly, and exactly what limiting object are these training meth-

ods converging to.

For classification problems with well separated classes and with rather large (poten-

tially overfit) single-hidden-layer networks, [15] shows that gradient descent with large

step size converges quickly to an interpolating solution on the training data. [58] demon-

strates this solution still has good generalization risk via a form of “benign overfitting”,

however this comes at a cost of being susceptible to adversarial perturbations in specific

directions that flip model outputs [24].

For very wide networksK > N , [45] shows neural networks satisfy a Polyak-Łojasiewicz

(PL) condition proving convergence of stochastic gradient descent to a global minimizer of

the loss function. This is an interesting phenomenon, however without suitable parameter

controls (such as ℓ1 controls), it is not clear if generalization properties will be favorable

in this setting for general function learning.

Another approach to understanding optimization in very large neural networks is to

compare them to certain infinite width limits. Two main objects arise in the analysis

depending on the scaling of the problem: the Neural Tangent Kernel (NTK) [33] and

mean field limit [50].

Consider a single-hidden-layer neural network where we do not specify the scaling of

164

the exterior weights

f(x) = αK

K∑
k=1

skψ(x · wk). (6.28)

For a constant V , we can consider the choice of scaling αK = V√
K

or αK = V
K

and consider

the limiting behavior of the network as we take K → ∞.

For αK = V√
K

, in over parameterized problems it has been shown that for small norm

initial weights, the network behaves very similarly to a linear first order Taylor expansion

around its initialization point. With small random initialization and control on the number

of gradient steps, gradient methods quickly converge to a near interpolating solution [1, 21,

59]. Networks trained in this regime approach regression with a fixed kernel determined

by the covariance of the gradient of the network at the random initialization. This is

tantamount to a linear regression onto a prefixed set of basis functions (the large eigenvalue

eigenvectors of the kernel).

A related perspective is in [18] which identifies this regime of an approximate linear

model of small weights as “lazy” training, that does not allow the internal weights to have

much freedom to adjust the basis. Models trained in this regime can have poor general-

ization, compared to models trained in the more difficult non-lazy regime. In contrast, we

seek a procedure that performs as well as if the set of directions wk are adapted to the

observed data.

With a scaling of αK = V
K

, which is the scaling of networks we use in our analysis,

the infinite width behavior if the network is quite different than the NTK regime. When

a network with scaling V
K

is trained with stochastic gradient descent, as K grows large

the network approaches a different limit called the mean field limit [50]. That is, there

is a density ρ(w, a) on interior and exterior weights such that the network approaches the

165

expected of a single neuron under this density,

f̄(x) =

∫
aψ(x · w)ρ(dw, da). (6.29)

Thus, the NTK regime converges to a linearly parameterized model fit by ridge regression,

while the mean field regime converges to a fully non-linear model.

6.3 Implications for Proven Hard Training Problems

Our original conception of the problem did not consider the a0, a1, a2, V values as values

growing in N or d, but rather as fixed constants. We can consider, if these values are N

or d dependent, what scaling we can allow in these values and still maintain our results.

Additionally, we force our neurons to be ℓ1 controlled with norm 1. Can we allow them to

have larger ℓ1 control, for example ∥wk∥1 ≤ d, so that {−1, 1}d ⊂ Sdd?

We note that we were not able to connect the log-concave coupling result we proved

using a continuous uniform prior to risk control we proved for the discrete uniform prior.

Therefore, we do not technically have guaranteed risk control and a log-concave coupling

at the same time. However, in this section we assume we are able to connect the two

results and consider what the implications would be for sampling and risk control when

the parameters of the problems grow in N and d.

6.3.1 Using a Larger Network than the Target

Assume we allow our neuron weights ∥w∥k ≤ d, and consider our target function as a

linear combination of K signed neurons,

g(x) =
K∑
k=1

1

K
skψ(wk · xi). (6.30)

166

Define w̃k = wk
d

as a neuron weight with ∥w̃k∥1 ≤ 1 as we consider in our problem.

Then we equivalently consider g(x) as a linear combination of K signed neurons using ℓ1

controlled neurons, with a factor of d inside the neuron activation function

g(x) =
K∑
k=1

1

K
skψ(dw̃k · x). (6.31)

We can then consider a new activation function which incorporates the d into its definition,

ψ̃(z) = ψ(dz), and our target can be expressed as

g(x) =
K∑
k=1

1

K
skψ̃(w̃k · x). (6.32)

Now, it may seem that for this neural network, a1 = maxz |ψ̃′(z)| = d, a2 = maxz |ψ̃′′(z)| =

d2 scale with d which would be problematic for our construction. However, this is a matter

of perspective. The only “intrinsic” property of this network is its scaling V (set here to be

1) and activation function ψ̃ (and its corresponding derivative bounds). Nothing is stopping

us from considering a much wider network with K̃ > K, with larger internal dimension

d̃ > d which uses the same scaling V and the same activation function ψ̃. For instance, we

can repeat neurons as many times as we like, and maintaining a convex combination this is

an equivalent representation of g. Furthermore, we may increase the internal dimension d̃

while maintaining our neuron weights as having ℓ1 norm less than or equal to 1 by simply

repeating the coordinate values and normalizing to have the same ℓ1 norm, eg.

x · wk = (1, 0.75) · (1
4
,−3

4
) (6.33)

167

is the same as the repeated version

x · wk = (1, 0.75, 1, 0.75) ·
(1
4
,−3

4
, 1
4
,−3

4
)

2
. (6.34)

Thus, let K and d be properties of our “base” target network. Define a1 = d, a2 = d2.

Let a0 = 1. Then we are free to train a neural network of arbitrary width K̃ > K and

arbitrary internal dimension d̃ > d with scaling V = 1 using neuron activation function ψ̃.

How large then should d̃, K̃ be? Also, how many data points N do we need in our

training? Consider if for some κ > 1 and some power p we have a large amount of

training data such that

N = κdp, p ≥ 4, (6.35)

We will see p ≥ 4 is the threshold we would need to achieve both a log-concave coupling

and risk control. Note d here is the dimension of our “base” target, d̃ is the dimension of

the larger network we will actually train. Define our internal weight dimension to be for

some power q,

d̃ = κ2dq, q >
3

2
p+ 5. (6.36)

Let the width of our network K̃ be

K̃ =
1√
d

(N

log(d̃)

) 1
4
=

1√
d

(κdp

q log(d) + 2 log(κ)

) 1
4
= d

p
4
− 1

2

(κ

q log(d) + 2 log(κ)

) 1
4
.

(6.37)

Then define the gain and grid size

M = d
3
2 K̃ β =

1

K̃
. (6.38)

168

This fully defines the relevant parameters of our training algorithms β,N,M, K̃, d̃. We

can then see that,

βN = κdp
1

d
p
4
− 1

2

(q log(d) + 2 log(κ)

κ

) 1
4
= (q log(d) + 2 log(κ))

1
4κ

3
4d

3
4
p+ 1

2 . (6.39)

Consider then the implications of this choice of parameters for our log-concave coupling

results and our risk control results. First, we check if these parameters satisfy a log-

concave coupling. Via Theorem 2.3, we must satisfy two conditions, the first being

K̃[log(2K̃d̃/300)] ≤ βN. (6.40)

Noting that K̃ = d
p
4
− 1

2O(κ
1
4) and βN = d

3
4
p+ 1

2O(κ
3
4) this holds for κ not too large. The

second condition for a log-concave coupling is

d̃ ≥ 4

√
3

2e
d2(CN)

3
2 [2d+ 4

√
32d2 +

(
1 +

1√
π

)
d

√
2

√
3

2
(CN)

1
2](βN)2 (6.41)

d̃ ≥
(
4

√
3

2e
(CN)

3
2 [2

1

d
+ 4

√
3

2
+

1

d

(
1 +

1√
π

)√
2

√
3

2
(CN)

1
2]
)
(q log(d) + 2 log(κ))

1
2κ

3
2d

3
2
p+5.

(6.42)

Then our d̃ ≥ κ2dq this holds for moderately small κ, when q > 3
2
p+ 5.

Our overall risk control with these parameters (using Theorem 3.3 and noting we have

set M = d
3
2 K̃, β = 1/K̃, a0 = V = b = 1) is of the form.

d
3
2
K̃3 log(2d̃+ 1)

N
+

1

2K̃
+

3

2

d
1
2

K̃
+ 2

1

K̃
(σ + 1)2 (6.43)

=
log(2d̃+ 1)

log(d̃)
3
4

1

κ
1
4d

p
4

+
((q log(d) + 2 log(κ))

κ

) 1
4
(1
2
+ 2(σ + 1)2 + 3

2
d

1
2)

d
p
4
− 1

2

. (6.44)

169

If p > 4, then we have bound

(log(2d̃+ 1)

log(d̃)

) 3
4
(log(2κ2dq + 1)

κ

) 1
4
+
((q log(d) + 2 log(κ))

κ

) 1
4
(
1

2
+ 2(σ + 1)2 +

3

2
).

(6.45)

Then for κ > log(d), the fractions involving κ will be less than 1, and increasing κ beyond

this point can make the risk arbitrarily small.

Note this analysis is for the derivative parameters a1, a2 being d dependent, similar

analysis can be done if V is d dependent. The conclusion being that with enough data N ,

a larger network with larger internal weight dimension with ℓ1 norm bounded by 1 can be

fit to the original target network using our method.

6.3.2 Application To Intersection of Half Spaces

Thus, if we are able handle weights with ℓ1 norm equal to their dimension d and claim

we can fit them arbitrarily well in polynomial time, this would seem on the surface to

contradict known hard problems in cryptography that are strongly conjectured to not be

solvable in polynomial time [20, 53, 44]. However, on closer analysis, it can be seen that

our method and results do not conflict with these hard problems and would not produce an

arbitrarily good solution in poly time for those problems. The key difference is we cannot

use ReLU functions in our method since we need second derivatives for our activation

function, and our notion of risk is in an L2 sense, not a pointwise risk as we will now

discuss.

We now briefly define the intersection of half spaces problem. Say for some dimension

d, we have d/2 weight vectors w1, · · · , wd/2 each in {−1, 1}d. We then define a function f

on {−1, 1}d :→ 0, 1 where for a vector x of plus/minus one values, f(x) = 1 if ⟨x,wk⟩ >

0 for all k ∈ {1, · · · , d/2}. Else, f(x) = 0. Thus, f only outputs 0 or 1 values.

With a distribution PX for the x values, given a function h : {−1, 1}d → {0, 1}, its

170

error with f is the probability of misclassification

ErrorPX (h) = PX(f(X) ̸= h(X)) = EPX [1{f(X) ̸= h(X)}]. (6.46)

Note this is a quite different notion of error than the L2 error we work with

EPX [(f(X)− h(X))2]. (6.47)

Given access to as many samples (xi, f(xi))Ni=1 as we like, and given any ϵ > 0, and for any

d, can we train an algorithm in poly(n, 1
ϵ
) that produces a function h with ErrorPX (h) ≤ ϵ?

It is strongly conjectured the answer is no, under the so called Strong Random Constraint

Satisfaction Problem assumption, or SRCSP. If SRCSP was shown to be not true, then the

entire field of cryptography would be thrown into disarray, so it may be taken as a very

strong conjecture.

Note that f(x) can be realized as a thresholded ReLU network in the following way.

Let f̃ be the neural network

f̃ =

d
2∑

k=1

2

d
[(x · wk + 1)+ − (x · wk)+]. (6.48)

Then f(x) = 1{f̃(x) = 1}. f̃ seems like the kind of network we should be able to train

under our model, however, we cannot allow ReLU activation functions. Instead, consider

that this difference in ReLU’s can be approximated by a tanh activation function, see

Figure 6.1.

(z + 1)+ − (z)+ ≈ tanh(4(z + 0.5)) + 1

2
. (6.49)

171

Figure 6.1: Comparison of difference of ReLU’s and tanh approximation

Thus, we can train a network of tanh activation functions with our methodology. By

the previous discussion on dealing with internal weights with ∥wk∥1 = d, we can handle

this by training a much larger network with larger internal weight dimension.

Thus, consider the set of functions

H = {h : [−1, 1]d → [0, 1], h(x) =
tanh(4(x · w + 0.5))

2
, ∥w∥1 ≤ d}. (6.50)

Let H̄ be its closure under L2(PX). Then, define g̃ to be the L2(P (X)) projection of f

into H̄,

g̃ = argming∈H̄EPX [(f(X)− g̃(X))2]. (6.51)

We can train a network of tanh’s with L2(PX) approximation error arbitrarily close to g̃’s

approximation error. However, g̃ has some intrinsic L2 error that is non-zero,

EPX [(f(x)− g̃(X))2] = ϵ∗ > 0, (6.52)

and we can never train a network with error less than this. Furthermore, g̃ is not a 0-1

172

output function, but outputs real values. We must then threshold g̃ to produce

g(x) = 1{g̃(x) > τ}. (6.53)

For some threshold τ . Our probability of misclassification is then

ErrorPX (g) = EPX [1{f(X) ̸= g(X)}]. (6.54)

We can show

E[(1− g(X))2|f(X) = 1)] ≤ ϵ∗

P (f(X) = 1)
(6.55)

E[(g(X))2|f(X) = 0)] ≤ ϵ∗

P (f(X) = 0)
. (6.56)

Then by Markov inequality for any κ > 0, we have

P ((1− g(X))2 ≥ κ|f(X) = 1) ≤ ϵ∗

κP (f(X) = 1)
(6.57)

P ((g(X))2 ≥ κ|f(X) = 0) ≤ ϵ∗

κP (f(X) = 0)
. (6.58)

Set our threshold as τ = 1− κ, then we have probability of error

ErrorPX (g) = P (f(X) = 1)P (g(X) < 1− κ|f(X) = 1) (6.59)

+ P (f(X) = 0)P (g(X) > 1− κ|f(X) = 0) (6.60)

= P (f(X) = 1)P ((1− g(X))2 > κ2|f(X) = 1) (6.61)

+ P (f(X) = 0)P ((g(X))2 > (1− κ)2|f(X) = 0) (6.62)

≤ ϵ∗

κ2
+

ϵ∗

(1− κ)2
. (6.63)

173

Set κ = 1
2

and we have

ErrorPX (g) ≤ 8ϵ∗. (6.64)

So up to an error probability ϵ = 8ϵ∗, our method should be able to train a neural network

in polynomial time. However, for errors below this threshold we cannot train a better

network, so we cannot provide a solution in poly(d, 1
ϵ
) for arbitrarily small ϵ.

174

Bibliography

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep
learning via over-parameterization. In International Conference on Machine Learn-
ing, pages 242–252. PMLR, 2019. 165

[2] Dominique Bakry and Michel Emery. Diffusions hypercontractives. Seminaire de
probabilites de Strasbourg, 19:177–206, 1985. 39

[3] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of
Markov Diffusion Operators, volume 103. Springer, 2014. 39

[4] Andrew Barron, Lucien Birgé, and Pascal Massart. Risk bounds for model selection
via penalization. Probability theory and related fields, 113:301–413, 1999. 7

[5] Andrew R Barron. The exponential convergence of posterior probabilities with im-
plications for Bayes estimators of density functions. Department of Statistics, Uni-
versity of Illinois Champaign, IL, 1988. 90

[6] Andrew R Barron. Neural net approximation. In Proc. 7th Yale Workshop on Adap-
tive and Learning Systems, volume 1, pages 69–72, 1992. 7

[7] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, 1993. 6, 7, 130

[8] Andrew R Barron. Information-theoretic characterization of Bayes performance and
the choice of priors in parametric and nonparametric problems. In Proc. Valencia
Conference, Bayesian Statistics, 6:22–52, 1998. 67, 90

[9] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, and Ronald A. DeVore. Ap-
proximation and learning by greedy algorithms. The Annals of Statistics, 36(1):64 –
94, 2008. 108, 130

[10] Andrew R Barron and Jason M Klusowski. Approximation and estimation for high-
dimensional deep learning networks. arXiv:1809.03090, 2018. 8

[11] Andrew R Barron and Jason M Klusowski. Complexity, statistical risk, and metric
entropy of deep nets using total path variation. arXiv:1902.00800, 2019. 8, 108

175

[12] Andrew R Barron and Curtis McDonald. Log concave coupling for sampling from
neural net posterior distributions. In Proc. IMS-NUS Singapore Workshop on Statis-
tical Machine Learning for High Dimensional Data, 2024. 64

[13] Roland Bauerschmidt and Thierry Bodineau. A very simple proof of the LSI for high
temperature spin systems. Journal of Functional Analysis, 276(8):2582–2588, 2019.
39

[14] Sergey G Bobkov and Michel Ledoux. From Brunn-Minkowski to Brascamp-
Lieb and to logarithmic Sobolev inequalities. Geometric and Functional Analysis,
10:1028–1052, 2000. 32, 49

[15] Yuhang Cai, Jingfeng Wu, Song Mei, Michael Lindsey, and Peter Bartlett. Large
stepsize gradient descent for non-homogeneous two-layer networks: Margin im-
provement and fast optimization. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. 9, 164

[16] Tom Charnock, Laurence Perreault-Levasseur, and François Lanusse. Bayesian neu-
ral networks. In Artificial Intelligence for High Energy Physics, pages 663–713.
WORLD SCIENTIFIC, 2020. 9, 41

[17] Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis
for a proximal algorithm for sampling. In Conference on Learning Theory, pages
2984–3014. PMLR, 2022. 40

[18] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. Advances in Neural Information Processing Systems, 32, 2019. 165

[19] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989. 6

[20] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complex-
ity to improper learning complexity. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 441–448, 2014. 170

[21] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Ma-
chine Learning, pages 1675–1685. PMLR, 2019. 165

[22] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sam-
pling: Metropolis-Hastings algorithms are fast. Journal of Machine Learning Re-
search, 20(183):1–42, 2019. 39, 44

[23] Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming.
Naval research logistics quarterly, 3(1-2):95–110, 1956. 131

176

[24] Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of
implicit bias: Generalization vs. robustness in relu networks. In The Thirty-seventh
Annual Conference on Neural Information Processing Systems, 2023. 9, 164

[25] Vı́ctor Gallego and David Rı́os Insua. Current advances in neural networks. Annual
Review of Statistics and Its Application, 9(1):197–222, 2022. 9, 41

[26] Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Algorith-
mic aspects of the log-Laplace transform and a non-Euclidean proximal sampler. In
The Thirty Sixth Annual Conference on Learning Theory, pages 2399–2439. PMLR,
2023. 40

[27] Robert D Gordon. Values of Mills’ ratio of area to bounding ordinate and of the nor-
mal probability integral for large values of the argument. The Annals of Mathematical
Statistics, 12(3):364–366, 1941. 46

[28] Boris Hanin and Alexander Zlokapa. Bayesian inference with deep weakly nonlinear
networks, May 2024. arXiv:2405.16630. 9, 10, 41

[29] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989. 6

[30] Jiri Hron, Roman Novak, Jeffrey Pennington, and Jascha Sohl-Dickstein. Wide
Bayesian neural networks have a simple weight posterior: theory and accelerated
sampling. In International Conference on Machine Learning, pages 8926–8945.
PMLR, 2022. 9, 10, 41

[31] C Huang, AR Barron, and GHL Cheang. Risk of penalized least squares, greedy
selection and l1 penalization for flexible function libraries. 108, 130

[32] Xunpeng Huang, Difan Zou, Yi-An Ma, Hanze Dong, and Tong Zhang. Faster sam-
pling via stochastic gradient proximal sampler. arXiv:2405.16734, 2024. 40

[33] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. Advances in Neural Information
Processing Systems, 31, 2018. 9, 164

[34] Lee K Jones. A simple lemma on greedy approximation in Hilbert space and conver-
gence rates for projection pursuit regression and neural network training. The Annals
of Statistics, pages 608–613, 1992. 130

[35] Jason M Klusowski and Andrew R Barron. Risk bounds for high-dimensional ridge
function combinations including neural networks. arXiv preprint arXiv:1607.01434,
2016. 108

[36] Jason M Klusowski and Andrew R Barron. Approximation by combinations of ReLU
and squared ReLU ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on
Information Theory, 64(12):7649–7656, 2018. 7, 8, 69

177

[37] Yunbum Kook, Yin-Tat Lee, Ruoqi Shen, and Santosh Vempala. Sampling with
Riemannian Hamiltonian Monte Carlo in a constrained space. Advances in Neural
Information Processing Systems, 35:31684–31696, 2022. 42

[38] Yunbum Kook and Santosh S Vempala. Gaussian cooling and Dikin walks: The
interior-point method for logconcave sampling. In The Thirty Seventh Annual Con-
ference on Learning Theory, pages 3137–3240. PMLR, 2024. 39, 42

[39] Yunbum Kook and Santosh S Vempala. Sampling and integration of logconcave
functions by algorithmic diffusion. arXiv preprint arXiv:2411.13462, 2024. 39, 42

[40] Wee Sun Lee, Peter L Bartlett, and Robert C Williamson. On efficient agnostic
learning of linear combinations of basis functions. In Proceedings of the Eighth
Annual Conference on Computational Learning Theory, pages 369–376, 1995. 130

[41] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a
restricted Gaussian oracle. In Conference on Learning Theory, pages 2993–3050.
PMLR, 2021. 40

[42] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science
& Business Media, 2006. 19

[43] Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing Statistical Hy-
potheses, volume 3. Springer, 1986. 50

[44] Shuchen Li, Ilias Zadik, and Manolis Zampetakis. On the hardness of learning one
hidden layer neural networks. In Proceedings of The 36th International Conference
on Algorithmic Learning Theory, volume 272 of Proceedings of Machine Learning
Research, pages 700–701. PMLR, 24–27 Feb 2025. 170

[45] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in
over-parameterized non-linear systems and neural networks. Applied and Computa-
tional Harmonic Analysis, 59:85–116, 2022. 9, 164

[46] Qiang Liu, Jian Peng, Alexander Ihler, and John Fisher III. Estimating the partition
function by discriminance sampling. In Proceedings of the Thirty-First Conference
on Uncertainty in Artificial Intelligence, pages 514–522, 2015. 118

[47] Samuel Livingstone, Michael Betancourt, Simon Byrne, and Mark Girolami. On the
geometric ergodicity of Hamiltonian Monte Carlo. Bernoulli, 25(4A):3109 – 3138,
2019. 39

[48] László Lovász and Santosh Vempala. The geometry of logconcave functions and
sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007. 39,
42

[49] Xi Luo. Penalized Likelihoods: Fast Algorithms and Risk Bounds. PhD thesis, Yale
University, 2009. Accessed: 2025-03-06. 130

178

[50] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018. 164, 165

[51] Andrea Montanari and Yuchen Wu. Provably efficient posterior sampling for sparse
linear regression via measure decomposition. arXiv:2406.19550, 2024. 39

[52] Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. Springer, New York, NY, 1996. 9, 41

[53] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity con-
trol in neural networks. In Conference on learning theory, pages 1376–1401. PMLR,
2015. 170

[54] Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. Dirichlet and Related Distribu-
tions: Theory, Methods and Applications. John Wiley & Sons, 2011. 159

[55] Herbert Robbins. A remark on Stirling’s formula. The American Mathematical
Monthly, 62(1):26–29, 1955. 58

[56] Vishwak Srinivasan, Andre Wibisono, and Ashia Wilson. Fast sampling from con-
strained spaces using the Metropolis-adjusted mirror Langevin algorithm. In The
Thirty Seventh Annual Conference on Learning Theory, pages 4593–4635. PMLR,
2024. 42

[57] Michalis K Titsias and Omiros Papaspiliopoulos. Auxiliary gradient-based sampling
algorithms. Journal of the Royal Statistical Society Series B: Statistical Methodol-
ogy, 80(4):749–767, 2018. 40

[58] Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Jour-
nal of Machine Learning Research, 24(123):1–76, 2023. 9, 164

[59] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes
over-parameterized deep relu networks. Machine Learning, 109:467–492, 2020. 165

179

	Introduction
	Approximation, Estimation, and Computation
	Algorithms for Neural Networks
	Bayesian Model
	Choice of Prior

	Log-Concave Coupling
	Risk and Regret
	Notation

	Log-Concave Coupling for Joint Sampling
	Introduction
	Reverse Conditional Density
	Marginal Density
	Conditional Covariance Control
	Practical Sampling Considerations
	Log-Concave Coupling and Existing Methods
	Bayesian Neural Networks
	Sampling the Reverse Conditional Density
	Sampling the Induced Marginal Density

	Appendix: Proofs of Additional Lemmas
	Proofs for Near Constancy of Z(w)
	Log-Concavity of pn*(w|) with Conditioning on the Set B
	Hölder Inequality Proofs

	Statistical Risk for Joint Sampling
	Introductory Concepts in Risk Control
	Approximation Ability of Single-Hidden-Layer Neural Networks
	Arbitrary Sequence Regret
	IID Sequence Predictive Risk Control
	Other Discrete Priors With Risk Control
	Multinomial, Geometric, and Poisson Distributions

	Appendix: Proofs of Additional Lemmas
	Improved 1/M2 Regret Proofs

	Log-Concave Coupling for Greedy Bayes
	Introduction
	Construction of the Greedy Bayes Estimator
	Posterior Sign Probability
	Methods to Compute Posterior Sign Probability Given Samples

	Log-Concave Coupling
	Reverse Conditional Density
	Marginal Density

	Statistical Risk for Greedy Bayes
	Introduction
	An Overview of Greedy Optimization Procedures for Neural Networks
	Arbitrary Sequence Regret
	IID Risk Control for Greedy Bayes

	Additional Content and Discussion
	Combining Continuous and Discrete Results
	Optimization and Infinite Width Limits
	Implications for Proven Hard Training Problems
	Using a Larger Network than the Target
	Application To Intersection of Half Spaces

	Bibliography

